skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Linshaw, Andrew_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Using the invariant theory of arc spaces, we find minimal strong generating sets for certain cosets of affine vertex algebras inside free field algebras that are related to classical Howe duality. These results have several applications. First, for any vertex algebra $${{\mathcal {V}}}$$, we have a surjective homomorphism of differential algebras $$\mathbb {C}[J_{\infty }(X_{{{\mathcal {V}}}})] \rightarrow \text {gr}^{F}({{\mathcal {V}}})$$; equivalently, the singular support of $${{\mathcal {V}}}$$ is a closed subscheme of the arc space of the associated scheme $$X_{{{\mathcal {V}}}}$$. We give many new examples of classically free vertex algebras (i.e., this map is an isomorphism), including $$L_{k}({{\mathfrak {s}}}{{\mathfrak {p}}}_{2n})$$ for all positive integers $$n$$ and $$k$$. We also give new examples where the kernel of this map is nontrivial but is finitely generated as a differential ideal. Next, we prove a coset realization of the subregular $${{\mathcal {W}}}$$-algebra of $${{\mathfrak {s}}}{{\mathfrak {l}}}_{n}$$ at a critical level that was previously conjectured by Creutzig, Gao, and the 1st author. Finally, we give some new level-rank dualities involving affine vertex superalgebras. 
    more » « less