skip to main content

Search for: All records

Creators/Authors contains: "Lippmann, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,324 new measurements from 878 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability andmore »Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on High Energy Soft QCD and Diffraction and one on the Determination of CKM Angles from B Hadrons. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 98 review articles. Volume 2 consists of the Particle Listings and contains also 22 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group ( and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print and as a web version optimized for use on phones as well as an Android app.« less
  2. Free, publicly-accessible full text available September 1, 2022
  3. Free, publicly-accessible full text available September 1, 2022
  4. Free, publicly-accessible full text available August 1, 2022
  5. Abstract The coherent photoproduction of $$\mathrm{J}/\psi $$ J / ψ and $${\uppsi '}$$ ψ ′ mesons was measured in ultra-peripheral Pb–Pb collisions at a center-of-mass energy $$\sqrt{s_{\mathrm {NN}}}~=~5.02$$ s NN = 5.02  TeV  with the ALICE detector. Charmonia are detected in the central rapidity region for events where the hadronic interactions are strongly suppressed. The $$\mathrm{J}/\psi $$ J / ψ is reconstructed using the dilepton ( $$l^{+} l^{-}$$ l + l - ) and proton–antiproton decay channels, while for the $${\uppsi '}$$ ψ ′   the dilepton and the $$l^{+} l^{-} \pi ^{+} \pi ^{-}$$ l + l - πmore »+ π - decay channels are studied. The analysis is based on an event sample corresponding to an integrated luminosity of about 233 $$\mu {\mathrm{b}}^{-1}$$ μ b - 1 . The results are compared with theoretical models for coherent $$\mathrm{J}/\psi $$ J / ψ and $${\uppsi '}$$ ψ ′ photoproduction. The coherent cross section is found to be in a good agreement with models incorporating moderate nuclear gluon shadowing of about 0.64 at a Bjorken- x of around $$6\times 10^{-4}$$ 6 × 10 - 4 , such as the EPS09 parametrization, however none of the models is able to fully describe the rapidity dependence of the coherent $$\mathrm{J}/\psi $$ J / ψ cross section including ALICE measurements at forward rapidity. The ratio of $${\uppsi '}$$ ψ ′ to $$\mathrm{J}/\psi $$ J / ψ coherent photoproduction cross sections was also measured and found to be consistent with the one for photoproduction off protons.« less
    Free, publicly-accessible full text available August 1, 2022
  6. Free, publicly-accessible full text available August 1, 2022
  7. Abstract The production of $$\phi $$ ϕ mesons has been studied in pp collisions at LHC energies with the ALICE detector via the dimuon decay channel in the rapidity region $$2.5< y < 4$$ 2.5 < y < 4 . Measurements of the differential cross section $$\mathrm{d}^2\sigma /\mathrm{d}y \mathrm{d}p_{\mathrm {T}}$$ d 2 σ / d y d p T are presented as a function of the transverse momentum ( $$p_{\mathrm {T}}$$ p T ) at the center-of-mass energies $$\sqrt{s}=5.02$$ s = 5.02 , 8 and 13 TeV and compared with the ALICE results at midrapidity. The differential cross sections at $$\sqrt{s}=5.02$$more »s = 5.02 and 13 TeV are also studied in several rapidity intervals as a function of $$p_{\mathrm {T}}$$ p T , and as a function of rapidity in three $$p_{\mathrm {T}}$$ p T intervals. A hardening of the $$p_{\mathrm {T}}$$ p T -differential cross section with the collision energy is observed, while, for a given energy, $$p_{\mathrm {T}}$$ p T spectra soften with increasing rapidity and, conversely, rapidity distributions get slightly narrower at increasing $$p_{\mathrm {T}}$$ p T . The new results, complementing the published measurements at $$\sqrt{s}=2.76$$ s = 2.76 and 7 TeV, allow one to establish the energy dependence of $$\phi $$ ϕ meson production and to compare the measured cross sections with phenomenological models. None of the considered models manages to describe the evolution of the cross section with $$p_{\mathrm {T}}$$ p T and rapidity at all the energies.« less
    Free, publicly-accessible full text available August 1, 2022
  8. Free, publicly-accessible full text available August 1, 2022
  9. Abstract The multiplicity dependence of the pseudorapidity density of charged particles in proton–proton (pp) collisions at centre-of-mass energies $$\sqrt{s}~=~5.02$$ s = 5.02 , 7 and 13 TeV measured by ALICE is reported. The analysis relies on track segments measured in the midrapidity range ( $$|\eta | < 1.5$$ | η | < 1.5 ). Results are presented for inelastic events having at least one charged particle produced in the pseudorapidity interval $$|\eta |<1$$ | η | < 1 . The multiplicity dependence of the pseudorapidity density of charged particles is measured with mid- and forward rapidity multiplicity estimators, the lattermore »being less affected by autocorrelations. A detailed comparison with predictions from the PYTHIA 8 and EPOS LHC event generators is also presented. The results can be used to constrain models for particle production as a function of multiplicity in pp collisions.« less