Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Soil microbes play a crucial role in the carbon (C) cycle; however, they have been overlooked in predicting the terrestrial C cycle. We applied a microbial-explicit Earth system model – the Community Land Model-Microbe (CLM-Microbe) – to investigate the dynamics of soil microbes during 1901 to 2016. The CLM-Microbe model was able to reproduce the variations of gross (GPP) and net (NPP) primary productivity, heterotrophic (HR) and soil (SR) respiration, microbial (MBC) biomass C in fungi (FBC) and bacteria (BBC) in the top 30 cm and 1 m, and dissolved (DOC) and soil organic C (SOC) in the top 30 cm and 1 m during 1901–2016. During the study period, simulated C variables increased by approximately 12 PgC yr−1 for HR, 25 PgC yr−1 for SR, 1.0 PgC for FBC and 0.4 PgC for BBC in 0–30 cm, and 1.2 PgC for FBC and 0.7 PgC for BBC in 0–1 m. Increases in microbial C fluxes and pools were widely found, particularly at high latitudes and in equatorial regions, but we also observed their decreases in some grids. Overall, the area-weighted averages of HR, SR, FBC, and BBC in the top 1 m were significantly correlated with those of soil moisture and soil temperature in the top 1 m. These results suggested that microbial C fluxes and pools were jointly governed by vegetation C input and soil temperature and moisture. Our simulations revealed the spatial and temporal patterns of microbial C fluxes and pools in response to environmental change, laying the foundation for an improved understanding of soil microbial roles in the global terrestrial C cycle.more » « less
-
The positive Arctic–methane (CH4) feedback forms when more CH4is released from the Arctic tundra to warm the climate, further stimulating the Arctic to emit CH4. This study utilized the CLM-Microbe model to project CH4emissions across five distinct Arctic tundra ecosystems on the Alaska North Slope, considering three Shared Socioeconomic Pathway (SSP) scenarios using climate data from three climate models from 2016 to 2100. Employing a hyper-resolution of 5 m × 5 m within 40,000 m2domains accounted for the Arctic tundra’s high spatial heterogeneity; three sites were near Utqiaġvik (US-Beo, US-Bes, and US-Brw), with one each in Atqasuk (US-Atq) and Ivotuk (US-Ivo). Simulated CH4emissions substantially increased by a factor of 5.3 to 7.5 under the SSP5–8.5 scenario compared to the SSP1–2.6 and SSP2–4.5 scenarios. The projected CH4emissions exhibited a stronger response to rising temperature under the SSP5–8.5 scenario than under the SSP1–2.6 and SSP2–4.5 scenarios, primarily due to strong temperature dependence and the enhanced precipitation-induced expansion of anoxic conditions that promoted methanogenesis. The CH4transport via ebullition and plant-mediated transport is projected to increase under all three SSP scenarios, and ebullition dominated CH4transport by 2100 across five sites. Projected CH4emissions varied in temperature sensitivity, with a Q10range of 2.7 to 60.9 under SSP1–2.6, 3.8 to 17.6 under SSP2–4.5, and 5.7 to 17.2 under SSP5–8.5. Compared with the other three sites, US-Atq and US-Ivo were estimated to have greater increases in CH4emissions due to warmer temperatures and higher precipitation. The fact that warmer sites and warmer climate scenarios had higher CH4emissions suggests an intensified positive Arctic–CH4feedback in the 21st century. Microbial physiology and substrate availability dominated the enhanced CH4production. The simulated intensified positive feedback underscores the urgent need for a more mechanistic understanding of CH4dynamics and the development of strategies to mitigate CH4across the Arctic.more » « less
-
Abstract The theory of microbial stoichiometry can predict the proportional coupling of microbial assimilation of carbon (C), nitrogen (N), and phosphorus (P). The proportional coupling is quantified by the homeostasis value (H). Covariation of H values for C, N, and P indicates that microbial C, N, and P assimilation are coupled. Here, we used a global dataset to investigate the spatiotemporal dynamics of H values of microbial C, N, and P across biomes. We found that land use and management led to the decoupling of P from C and N metabolism over time and across space. Results from structural equation modeling revealed that edaphic factors dominate the microbial homeostasis of P, while soil elemental concentrations dominate the homeostasis of C and N. This result was further confirmed using the contrasting factors on microbial P vs. microbial C and N derived from a machine-learning algorithm. Overall, our study highlights the impacts of management on shifting microbial roles in nutrient cycling.more » « less
-
Spatial heterogeneity in methane (CH 4 ) flux requires a reliable upscaling approach to reach accurate regional CH 4 budgets in the Arctic tundra. In this study, we combined the CLM-Microbe model with three footprint algorithms to scale up CH 4 flux from a plot level to eddy covariance (EC) tower domains (200 m × 200 m) in the Alaska North Slope, for three sites in Utqiaġvik (US-Beo, US-Bes, and US-Brw), one in Atqasuk (US-Atq) and one in Ivotuk (US-Ivo), for a period of 2013–2015. Three footprint algorithms were the homogenous footprint (HF) that assumes even contribution of all grid cells, the gradient footprint (GF) that assumes gradually declining contribution from center grid cells to edges, and the dynamic footprint (DF) that considers the impacts of wind and heterogeneity of land surface. Simulated annual CH 4 flux was highly consistent with the EC measurements at US-Beo and US-Bes. In contrast, flux was overestimated at US-Brw, US-Atq, and US-Ivo due to the higher simulated CH 4 flux in early growing seasons. The simulated monthly CH 4 flux was consistent with EC measurements but with different accuracies among footprint algorithms. At US-Bes in September 2013, RMSE and NNSE were 0.002 μmol m −2 s −1 and 0.782 using the DF algorithm, but 0.007 μmol m −2 s −1 and 0.758 using HF and 0.007 μmol m −2 s −1 and 0.765 using GF, respectively. DF algorithm performed better than the HF and GF algorithms in capturing the temporal variation in daily CH 4 flux each month, while the model accuracy was similar among the three algorithms due to flat landscapes. Temporal variations in CH 4 flux during 2013–2015 were predominately explained by air temperature (67–74%), followed by precipitation (22–36%). Spatial heterogeneities in vegetation fraction and elevation dominated the spatial variations in CH 4 flux for all five tower domains despite relatively weak differences in simulated CH 4 flux among three footprint algorithms. The CLM-Microbe model can simulate CH 4 flux at both plot and landscape scales at a high temporal resolution, which should be applied to other landscapes. Integrating land surface models with an appropriate algorithm provides a powerful tool for upscaling CH 4 flux in terrestrial ecosystems.more » « less
-
Rudi, Knut (Ed.)ABSTRACT Recent work revealed an active biological chlorine cycle in coastal Arctic tundra of northern Alaska. This raised the question of whether chlorine cycling was restricted to coastal areas or if these processes extended to inland tundra. The anaerobic process of organohalide respiration, carried out by specialized bacteria like Dehalococcoides , consumes hydrogen gas and acetate using halogenated organic compounds as terminal electron acceptors, potentially competing with methanogens that produce the greenhouse gas methane. We measured microbial community composition and soil chemistry along an ∼262-km coastal-inland transect to test for the potential of organohalide respiration across the Arctic Coastal Plain and studied the microbial community associated with Dehalococcoides to explore the ecology of this group and its potential to impact C cycling in the Arctic. Concentrations of brominated organic compounds declined sharply with distance from the coast, but the decrease in organic chlorine pools was more subtle. The relative abundances of Dehalococcoides were similar across the transect, except for being lower at the most inland site. Dehalococcoides correlated with other strictly anaerobic genera, plus some facultative ones, that had the genetic potential to provide essential resources (hydrogen, acetate, corrinoids, or organic chlorine). This community included iron reducers, sulfate reducers, syntrophic bacteria, acetogens, and methanogens, some of which might also compete with Dehalococcoides for hydrogen and acetate. Throughout the Arctic Coastal Plain, Dehalococcoides is associated with the dominant anaerobes that control fluxes of hydrogen, acetate, methane, and carbon dioxide. Depending on seasonal electron acceptor availability, organohalide-respiring bacteria could impact carbon cycling in Arctic wet tundra soils. IMPORTANCE Once considered relevant only in contaminated sites, it is now recognized that biological chlorine cycling is widespread in natural environments. However, linkages between chlorine cycling and other ecosystem processes are not well established. Species in the genus Dehalococcoides are highly specialized, using hydrogen, acetate, vitamin B 12 -like compounds, and organic chlorine produced by the surrounding community. We studied which neighbors might produce these essential resources for Dehalococcoides species. We found that Dehalococcoides species are ubiquitous across the Arctic Coastal Plain and are closely associated with a network of microbes that produce or consume hydrogen or acetate, including the most abundant anaerobic bacteria and methanogenic archaea. We also found organic chlorine and microbes that can produce these compounds throughout the study area. Therefore, Dehalococcoides could control the balance between carbon dioxide and methane (a more potent greenhouse gas) when suitable organic chlorine compounds are available to drive hydrogen and acetate uptake.more » « less
-
Abstract Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO 2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO 2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO 2 later in the season.more » « less
-
Abstract Cold seasons in Arctic ecosystems are increasingly important to the annual carbon balance of these vulnerable ecosystems. Arctic winters are largely harsh and inaccessible leading historic data gaps during that time. Until recently, cold seasons have been assumed to have negligible impacts on the annual carbon balance but as data coverage increases and the Arctic warms, the cold season has been shown to account for over half of annual methane (CH4) emissions and can offset summer photosynthetic carbon dioxide (CO2) uptake. Freeze–thaw cycle dynamics play a critical role in controlling cold season CO2and CH4loss, but the relationship has not been extensively studied. Here, we analyze freeze–thaw processes through in situ CO2and CH4fluxes in conjunction with soil cores for physical structure and porewater samples for redox biogeochemistry. We find a movement of water toward freezing fronts in soil cores, leaving air spaces in soils, which allows for rapid infiltration of oxygen‐rich snow melt in spring as shown by oxidized iron in porewater. The snow melt period coincides with rising ecosystem respiration and can offset up to 41% of the summer CO2uptake. Our study highlights this important seasonal process and shows spring greenhouse gas emissions are largely due to production from respiration instead of only bursts of stored gases. Further warming is projected to result in increases of snowpack and deeper thaws, which could increase this ecosystem respiration dominate snow melt period causing larger greenhouse gas losses during spring.more » « less