Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We measured the covariance matrix of the fields generated in an integrated third-order optical parametric oscillator operating above threshold. We observed up to (2.3 ± 0.3) dB of squeezing in amplitude difference and inferred (4.9 ± 0.7) dB of on-chip squeezing, while an excess of noise for the sum of conjugated quadratures hinders the entanglement. The degradation of amplitude correlations and state purity for increasing the pump power is consistent with the observed growth of the phase noise of the fields, showing the necessity of strategies for phase noise control aiming at entanglement generation in these systems.more » « less
-
Abstract Total internal reflection (TIR) governs the guiding mechanisms of almost all dielectric waveguides and therefore constrains most of the light in the material with the highest refractive index. The few options available to access the properties of lower-index materials include designs that are either lossy, periodic, exhibit limited optical bandwidth or are restricted to subwavelength modal volumes. Here, we propose and demonstrate a guiding mechanism that leverages symmetry in multilayer dielectric waveguides as well as evanescent fields to strongly confine light in low-index materials. The proposed waveguide structures exhibit unusual light properties, such as uniform field distribution with a non-Gaussian spatial profile and scale invariance of the optical mode. This guiding mechanism is general and can be further extended to various optical structures, employed for different polarizations, and in different spectral regions. Therefore, our results can have huge implications for integrated photonics and related technologies.more » « less
-
We demonstrate the loading of very short optical pulses into a high-Q cavity with linewidth much narrower than the pulse frequency envelope. We show that loading into the cavity is significantly enhanced if the pulse is combined with a cw-field, thus altering the pulse frequency profile to better match the cavity profile.more » « less