skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liscidini, Marco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Integrated photonic microresonators have become an essential resource for generating photonic qubits for quantum information processing, entanglement distribution and networking, and quantum communications. The pair-generation rate is enhanced by reducing the microresonator radius, but this comes at the cost of increasing the frequency-mode spacing and reducing the quantum information spectral density. Here, we circumvent this rate-density trade-off in an Al Ga As -on-insulator photonic device by multiplexing an array of 20 small-radius microresonators, each producing a 650-GHz-spaced comb of time-energy entangled-photon pairs. The resonators can be independently tuned via integrated thermo-optic heaters, enabling control of the mode spacing from degeneracy up to a full free spectral range. We demonstrate simultaneous pumping of five resonators with up to 50 -GHz relative comb offsets, where each resonator produces pairs exhibiting time-energy entanglement visibilities up to 95 % , coincidence-to-accidental ratios exceeding 5000 , and an on-chip pair rate up to 2.6 G Hz / mW 2 per comb line—an improvement over prior work by more than a factor of 40. As a demonstration, we generate frequency-bin qubits in a maximally entangled two-qubit Bell state with fidelity exceeding 87 % ( 90 % with background correction) and detected frequency-bin entanglement rates up to 7 kHz (an approximately 70 MHz on-chip pair rate) using a pump power of approximately 250 μ W . Multiplexing small-radius microresonators combines the key capabilities required for programmable and dense photonic qubit encoding while retaining high pair-generation rates, heralded single-photon purity, and entanglement fidelity. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Discrete frequency modes, or bins, present a blend of opportunities and challenges for photonic quantum information processing. Frequency-bin-encoded photons are readily generated by integrated quantum light sources, naturally high-dimensional, stable in optical fiber, and massively parallelizable in a single spatial mode. Yet quantum operations on frequency-bin states require coherent and controllable multifrequency interference, making them significantly more challenging to manipulate than more traditional spatial degrees of freedom. In this mini-review, we describe recent developments that have transformed these challenges and propelled frequency bins forward. Focusing on sources, manipulation schemes, and detection approaches, we introduce the basics of frequency-bin encoding, summarize the state of the art, and speculate on the field’s next phases. Given the combined progress in integrated photonics, high-fidelity quantum gates, and proof-of-principle demonstrations, frequency-bin quantum information is poised to emerge from the lab and leave its mark on practical quantum information processing—particularly in networking where frequency bins offer unique tools for multiplexing, interconnects, and high-dimensional communications. 
    more » « less