Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The cold angular rolling process (CARP) is being developed as a continuous severe plastic deformation technique, which can process metal sheets without any length limitations at room temperature. CARP contains cold rolling and equal‐channel angular process components. The sheet thickness is kept consistent before and after CARP, allowing multiple passes of the sheet. The desired microstructure and mechanical properties can be achieved in the processed metallic sheets. The current study is aimed to evaluate the capability of CARP by processing copper sheets with different sheet widths for repetitive passes. The CARP‐treated sheets are examined by lab‐scale X‐ray and high‐energy synchrotron X‐ray diffraction to investigate the evolution in dislocation density, texture, and strain anisotropy, and by tensile testing to identify the bulk mechanical properties. The digital image correlation method is applied to tensile testing so that strain localization within the sample gauge is visualized and deformation behavior is evaluated after yielding till postnecking by estimating the hardening exponent and strain hardening rate of the CARP‐treated sheet. Comparing the reported continuous and multiple‐step processes on Cu and its alloys, the present study confirms that the CARP is potentially a useful sheet process for strengthening ductile metals.
-
Herein, lab‐scale X‐ray diffraction and in situ heating neutron diffraction analyses for evaluating the structural changes at postprinting nanostructuring and structural relaxation upon heating, respectively, in an additive‐manufactured (AM) 316L stainless steel are conducted. The nanostructured AM steel after nanostructuring by high‐pressure torsion reached crystallite sizes of 23–26 nm, a dislocation density of ≈45 × 1014 m−2and a microstrain of >0.008. A limited amount of deformation‐induced
ε ‐martensite was observed at a local region in the nanostructured AM steel. The time‐resolved neutron diffraction experiment upon heating successfully visualizes the sequential structural relaxation and linear thermal lattice expansion in the nanostructured AM steel. In practice, by calculating the changes in crystallite sizes, microstrains, and dislocation densities, the relaxation behaviors of the nanocrystalline AM steel is observed: 1) recovery with slow stress relaxation with increasing hardness up to 873 K, 2) recrystallization with accelerated stress relaxation at 873–973 K; and 3) grain growth above 973 K with (iii′) total stress relaxation in lattices up to 1023 K. In addition, this manuscript makes connections between the critical subjects in materials science of advanced manufacturing, metal processing and properties, and novel time‐resolved characterization techniques.