skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Litmer, Allison R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Individual variation in energetics, environment, and genetics can influence population-level processes. However, it is often assumed that locally measured thermal and bioenergetic responses apply among broadly related species. Even closely related taxa may differ in the thermal sensitivity of performance, which in turn influences population persistence, population vital rates, and the ability to respond to environmental changes. The objectives of this project were to quantify the thermal sensitivity of digestive physiology in an Sceloporus lizards, to compare closely related, but geographically distinct, populations. Sceloporus lizards are a model organism, as they are known to exhibit thermally dependent physiologies and are geographically widespread. Digestive passage time, food consumption, fecal and urate production, metabolizable energy intake (MEI), and assimilated energy (AE) were compared for Sceloporus consobrinus in Arkansas and S. undulatus in South Carolina and New Jersey. Published data were acquired for NJ and SC lizards, while original data were collected for S. consobrinus. Comparisons of digestion among populations were made at 30 ◦C, 33 ◦C, or 36 ◦C. Results suggest that digestive physiology differs among populations, with S. consobrinus being more efficient at warmer temperatures. In contrast, NJ and SC lizards had quicker passage times and lower fecal and urate production at 30 ◦C in comparison to AR. The results of the current study exemplify how closely related organisms can differ in thermal sensitivity of performance. Such data are important for understanding how individual-level processes can vary in response to climate, with implications for understanding variation in physiological traits across the range of Sceloporus lizards. 
    more » « less
  2. In nature, many organisms experience a daily range of body temperatures. Thermal performance at stable temperatures is often extrapolated to predict function in cyclical environments. However, temperature order and cyclicity may influence physiological processes. The current study compared energy intake, digestive passage time and energy budgets at a stable temperature (33°C) and two temperature cycles in lizards (Sceloporus consobrinus), to determine (1) whether stable treatments adequately project performance in a cycling environment and (2) whether temperature order influences performance. Cycles had a mean temperature of 33°C, and rotated through 30°C, 33°C and 36°C daily, with equal durations of time at each temperature but differing temperature order, with warm days and cool nights in cycle 1 and cool days and warm nights in cycle 2. For analyses, performance in the stable treatment was compared with that during cycles. If temperature is the primary factor regulating performance, then performance from the stable treatment and cycles should compare favorably. However, physiological performance varied based on temperature treatment. Energy intake and budgets were similar between the stable trial and cycle 1 but not cycle 2. However, passage time did not differ. Notably, the two cycling regimes consistently varied in performance, indicating that temperature order plays a primary role in regulating performance. Physiological data collection requires careful consideration of effects of cycling versus stable temperature treatments. Stable temperatures do not consistently represent performance in cycling regimes and consideration should be paid not only to which temperatures animals experience but also to how temperature is experienced in nature. 
    more » « less