skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Litvak, Elizaveta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Trees in residential environments are affected by a unique combination of environmental and anthropogenic factors, including occasional insect outbreaks that are increasing in frequency and severity due to climate change. We studied loblolly pine trees infested by bark beetles in a residential backyard in a southeastern US city. We investigated the responses of tree and stand‐level transpiration to environmental factors (solar radiation, atmospheric vapor pressure deficit, and soil moisture), severe weather events (strong winds and heavy storms), bark beetle infestation, and human actions (insecticide treatments and tree removals). We used constant heat dissipation probes to make continuous sap flux measurements (J0) in tree boles. Over 22 months of the study,J0of trees with confirmed infestation decreased from ~90 to ~60 g cm−2 day−1andJ0of the rest of the trees increased from ~60 to ~80 g cm−2 day−1. One infested tree died, as itsJ0steadily declined from 110 g cm−2 day−1to zero over the course of 2 months, followed by a loss of foliage and visible signs of severe infestation 6 months later.J0was sensitive to variations in incoming solar radiation and atmospheric vapor pressure deficit. In most trees,J0linearly responded to soil water content during drought periods. Yet despite complex dynamics ofJ0variations, plot‐level transpiration at the end of the study was the same as at the beginning due to compensatory increases in tree transpiration rates. This study highlights the intrinsic interplay of environmental, biotic, and anthropogenic factors in residential environments where human actions may directly mediate ecosystem responses to climate. 
    more » « less
  2. Urban forests provide ecosystem services important for regulating climate, conserving biodiversity, and maintaining human well‐being. However, these forests vary in composition and physiological traits due to their unique biophysical and social contexts. This variation complicates assessing the functions and services of different urban forests. To compare the characteristics of the urban forest, we sampled the species composition and two externally sourced traits (drought tolerance and water‐use capacity) of tree and shrub species in residential yards, unmanaged areas, and natural reference ecosystems within six cities across the contiguous US. As compared to natural and unmanaged forests, residential yards had markedly higher tree and shrub species richness, were composed primarily of introduced species, and had more species with low drought tolerance. The divergence between natural and human‐managed areas was most dramatic in arid climates. Our findings suggest that the answer to the question of “what is an urban forest” strongly depends on where you look within and between cities. 
    more » « less
  3. Abstract Despite interest in the contribution of evapotranspiration (ET) of residential turfgrass lawns to household and municipal water budgets across the United States, the spatial and temporal variability of residential lawn ET across large scales is highly uncertain. We measured instantaneous ET (ETinst) of lawns in 79 residential yards in six metropolitan areas: Baltimore, Boston, Miami, Minneapolis‐St. Paul (mesic climates), Los Angeles and Phoenix (arid climates). Each yard had one of four landscape types and management practices: traditional lawn‐dominated yards with high or low fertilizer input, yards with water‐conserving features, and yards with wildlife‐friendly features. We measured ETinstin situ during the growing season using portable chambers and identified environmental and anthropogenic factors controlling ET in residential lawns. For each household, we used ETinstto estimate daily ET of the lawn (ETdaily) and multiplied ETdailyby the lawn area to estimate the total volume of water lost through ET of the lawn (ETvol). ETdailyvaried from 0.9 ± 0.4 mm d1in mesic cities to 2.9 ± 0.7 mm d−1in arid cities. Neither ETinstnor ETdailywas significantly influenced by yard landscape types and ETinstpatterns indicated that lawns may be largely decoupled from regional rain‐driven climate patterns. ETvolranged from ∼0 L d−1to over 2,000 L d−1, proportionally increasing with lawn area. Current irrigation and lawn management practices did not necessarily result in different ETinstor ETdailyamong traditional, water‐conserving, or wildlife‐friendly yards, but smaller lawn areas in water‐conserving and wildlife‐friendly yards resulted in lower ETvol
    more » « less