Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available July 1, 2026
-
Tanihata, I; Toki, H; Kajino, T (Ed.)We review the theory of nuclear collective vibrations evolved over decades from phenomenological quasiclassical picture to sophisticated microscopic approaches. The major focus is put on the underlying microscopic mechanisms of emergent effects, which define the properties of giant resonances and soft modes. The response of atomic nuclei to electromagnetic and weak fields is discussed in detail. Astrophysical implications of the giant resonances and soft modes are outlined.more » « less
-
Nuclear response theory beyond the one-loop approximation is formulated for the case of finite temperature. For this purpose, the time blocking approximation to the time-dependent part of the in-medium nucleon-nucleon interaction amplitude is adopted for the thermal (imaginary-time) Green's function formalism. We found that introducing a soft blocking, instead of a sharp blocking at zero temperature, brings the Bethe-Salpeter equation to a single frequency variable equation also at finite temperatures. The method is implemented self-consistently in the framework of Quantum Hadrodynamics and designed to connect the high-energy scale of heavy mesons and the low-energy domain of nuclear medium polarization effects in a parameter-free way. In this framework, we investigate the temperature dependence of dipole spectra in the even-even nuclei $$^{48}$$Ca and $$^{100,120,132}$$Sn with a special focus on the giant dipole resonance's width problem and on the low-energy dipole strength distribution.more » « less
-
Borge, Maria (Ed.)Abstract Photonuclear reactions of light nuclei below a mass of$$A=60$$ are planned to be studied experimentally and theoretically with the PANDORA (Photo-Absorption of Nuclei and Decay Observation for Reactions in Astrophysics) project. Two experimental methods, virtual photon excitation by proton scattering and real photo absorption by a high-brilliance$$\gamma $$ -ray beam produced by laser Compton scattering, will be applied to measure the photoabsorption cross sections and decay branching ratio of each decay channel as a function of the photon energy. Several nuclear models, e.g. anti-symmetrized molecular dynamics, mean-field and beyond-mean-field models, a large-scale shell model, and ab initio models, will be employed to predict the photonuclear reactions. The uncertainty in the model predictions will be evaluated based on the discrepancies between the model predictions and experimental data. The data and predictions will be implemented in the general reaction calculation code, . The results will be applied to the simulation of the photo-disintegration process of ultra-high-energy cosmic rays in inter-galactic propagation.more » « less