skip to main content


Search for: All records

Creators/Authors contains: "Litwin, David G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Features of landscape morphology—including slope, curvature, and drainage dissection—are important controls on runoff generation in upland landscapes. Over long timescales, runoff plays an essential role in shaping these same features through surface erosion. This feedback between erosion and runoff generation suggests that modeling long‐term landscape evolution together with dynamic runoff generation could provide insight into hydrological function. Here we examine the emergence of variable source area runoff generation in a new coupled hydro‐geomorphic model that accounts for water balance partitioning between surface flow, subsurface flow, and evapotranspiration as landscapes evolve over millions of years. We derive a minimal set of dimensionless numbers that provide insight into how hydrologic and geomorphic parameters together affect landscapes. Across the parameter space we investigated, model results collapsed to a single inverse relationship between the dimensionless relief and the ratio of catchment quickflow to discharge. Furthermore, we found an inverse relationship between the Hillslope number, which describes topographic relief relative to aquifer thickness, and the proportion of the landscape that was variably saturated. While the model generally produces fluvial topography visually similar to simpler landscape evolution models, certain parameter combinations produce wide valley bottom wetlands and non‐dendritic, trellis‐like drainage networks, which may reflect real conditions in some landscapes where aquifer gradients become decoupled from topography. With these results, we demonstrate the power of hydro‐geomorphic models for generating new insights into hydrological processes, and also suggest that subsurface hydrology may be integral for modeling aspects of long‐term landscape evolution.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  2. Abstract

    The hydrologic dynamics and geomorphic evolution of watersheds are intimately coupled—runoff generation and water storage are controlled by topography and properties of the surface and subsurface, while also affecting the evolution of those properties over geologic time. However, the large disparity between their timescales has made it difficult to examine interdependent controls on emergent hydrogeomorphic properties, such as hillslope length, drainage density, and extent of surface saturation. In this study, we develop a new model coupling hydrology and landscape evolution to explore how runoff generation affects long‐term catchment evolution, and analyze numerical results using a nondimensional scaling framework. We focus on hydrologic processes dominating in humid climates where storm runoff primarily arises from shallow subsurface flow and from precipitation on saturated areas. The model solves hydraulic groundwater equations to predict the water‐table elevation given prescribed, constant groundwater recharge. Water in excess of the subsurface capacity for transport becomes overland flow, which generates shear stress on the surface and may detach and transport sediment. This affects the landscape form that in turn affects runoff generation. We show that (a) four dimensionless parameters describe the possible steady state landscapes that coevolve under steady recharge; (b) hillslope length increases with increasing transmissivity relative to the recharge rate; (c) three topographic metrics—steepness index, Laplacian curvature, and topographic index—together provide a basis for interpreting landscapes that have coevolved with runoff generated via shallow subsurface flow. Finally we discuss the possibilities and limitations for quantitative comparisons between the model results and real landscapes.

     
    more » « less