skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Amanda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Producing efficient array code is crucial in high-performance domains like image processing and machine learning. It requires the ability to control factors like compute intensity and locality by reordering computations into different stages and granularities with respect to where they are stored. However, traditional pure, functional tensor languages struggle to do so. In a previous publication, we introduced ATL as a pure, functional tensor language capable of systematically decoupling compute and storage order via a set of high-level combinators known as reshape operators. Reshape operators are a unique functional-programming construct since they manipulate storage location in the generated code by modifying the indices that appear on the left-hand sides of storage expressions. We present a formal correctness proof for an implementation of the compilation algorithm, marking the first verification of a lowering algorithm targeting imperative loop nests from a source functional language that enables separate control of compute and storage ordering. One of the core difficulties of this proof required properly formulating the complex invariants to ensure that these storage-index remappings were well-formed. Notably, this exercise revealed a soundness bug in the original published compilation algorithm regarding the truncation reshape operators. Our fix is a new type system that captures safety conditions that were previously implicit and enables us to prove compiler correctness for well-typed source programs. We evaluate this type system and compiler implementation on a range of common programs and optimizations, including but not limited to those previously studied to demonstrate performance comparable to established compilers like Halide. 
    more » « less
    Free, publicly-accessible full text available June 20, 2025
  2. We present a lightweight Coq framework for optimizing tensor kernels written in a pure, functional array language. Optimizations rely on user scheduling using series of verified, semantics-preserving rewrites. Unusually for compilation targeting imperative code with arrays and nested loops, all rewrites are source-to-source within a purely functional language. Our language comprises a set of core constructs for expressing high-level computation detail and a set of what we call reshape operators, which can be derived from core constructs but trigger low-level decisions about storage patterns and ordering. We demonstrate that not only is this system capable of deriving the optimizations of existing state-of-the-art languages like Halide and generating comparably performant code, it is also able to schedule a family of useful program transformations beyond what is reachable in Halide. 
    more » « less