skip to main content


Search for: All records

Creators/Authors contains: "Liu, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aim: Video review programs in hospitals play a crucial role in optimizing operating room workflows. In scenarios where split-seconds can change the outcome of a surgery, the potential of such programs to improve safety and efficiency is profound. However, leveraging this potential requires a systematic and automated analysis of human actions. Existing methods predominantly employ manual methods, which are labor-intensive, inconsistent, and difficult to scale. Here, we present an AI-based approach to systematically analyze the behavior and actions of individuals from operating rooms (OR) videos.

    Methods: We designed a novel framework for human mesh recovery from long-duration surgical videos by integrating existing human detection, tracking, and mesh recovery models. We then trained an action recognition model to predict surgical actions from the predicted temporal mesh sequences. To train and evaluate our approach, we annotated an in-house dataset of 864 five-second clips from simulated surgical videos with their corresponding actions.

    Results: Our best model achieves an F1 score and the area under the precision-recall curve (AUPRC) of 0.81 and 0.85, respectively, demonstrating that human mesh sequences can be successfully used to recover surgical actions from operating room videos. Model ablation studies suggest that action recognition performance is enhanced by composing human mesh representations with lower arm, pelvic, and cranial joints.

    Conclusion: Our work presents promising opportunities for OR video review programs to study human behavior in a systematic, scalable manner.

     
    more » « less
    Free, publicly-accessible full text available June 30, 2025
  2. Ant behavior relies on a collection of natural products, from following trail pheromones during foraging to warding off potential predators. How nervous systems sense these compounds to initiate a behavioral response remains unclear. Here, we used Caenorhabditis elegans chemotaxis assays to investigate how ant compounds are detected by heterospecific nervous systems. We found that C. elegans avoid extracts of the pavement ant (Tetramorium immigrans) and either osm-9 or tax-4 ion channels are required for this response. These experiments were conducted in an undergraduate laboratory course, demonstrating that new insights into interspecies interactions can be generated through genuine research experiences in a classroom setting.

     
    more » « less
    Free, publicly-accessible full text available March 25, 2025
  3. Cortical computations emerge from the dynamics of neurons embedded in complex cortical circuits. Within these circuits, neuronal ensembles, which represent subnetworks with shared functional connectivity, emerge in an experience-dependent manner. Here we induced ensembles inex vivocortical circuits from mice of either sex by differentially activating subpopulations through chronic optogenetic stimulation. We observed a decrease in voltage correlation, and importantly a synaptic decoupling between the stimulated and nonstimulated populations. We also observed a decrease in firing rate during Up-states in the stimulated population. These ensemble-specific changes were accompanied by decreases in intrinsic excitability in the stimulated population, and a decrease in connectivity between stimulated and nonstimulated pyramidal neurons. By incorporating the empirically observed changes in intrinsic excitability and connectivity into a spiking neural network model, we were able to demonstrate that changes in both intrinsic excitability and connectivity accounted for the decreased firing rate, but only changes in connectivity accounted for the observed decorrelation. Our findings help ascertain the mechanisms underlying the ability of chronic patterned stimulation to create ensembles within cortical circuits and, importantly, show that while Up-states are a global network-wide phenomenon, functionally distinct ensembles can preserve their identity during Up-states through differential firing rates and correlations.

    SIGNIFICANCE STATEMENTThe connectivity and activity patterns of local cortical circuits are shaped by experience. This experience-dependent reorganization of cortical circuits is driven by complex interactions between different local learning rules, external input, and reciprocal feedback between many distinct brain areas. Here we used anex vivoapproach to demonstrate how simple forms of chronic external stimulation can shape local cortical circuits in terms of their correlated activity and functional connectivity. The absence of feedback between different brain areas and full control of external input allowed for a tractable system to study the underlying mechanisms and development of a computational model. Results show that differential stimulation of subpopulations of neurons significantly reshapes cortical circuits and forms subnetworks referred to as neuronal ensembles.

     
    more » « less