skip to main content

Search for: All records

Creators/Authors contains: "Liu, Cong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gonzalez, D. (Ed.)

    Today’s research on human-robot teaming requires the ability to test artificial intelligence (AI) algorithms for perception and decision-making in complex real-world environments. Field experiments, also referred to as experiments “in the wild,” do not provide the level of detailed ground truth necessary for thorough performance comparisons and validation. Experiments on pre-recorded real-world data sets are also significantly limited in their usefulness because they do not allow researchers to test the effectiveness of active robot perception and control or decision strategies in the loop. Additionally, research on large human-robot teams requires tests and experiments that are too costly even for the industry and may result in considerable time losses when experiments go awry. The novel Real-Time Human Autonomous Systems Collaborations (RealTHASC) facility at Cornell University interfaces real and virtual robots and humans with photorealistic simulated environments by implementing new concepts for the seamless integration of wearable sensors, motion capture, physics-based simulations, robot hardware and virtual reality (VR). The result is an extended reality (XR) testbed by which real robots and humans in the laboratory are able to experience virtual worlds, inclusive of virtual agents, through real-time visual feedback and interaction. VR body tracking by DeepMotion is employed in conjunction with the OptiTrack motion capture system to transfer every human subject and robot in the real physical laboratory space into a synthetic virtual environment, thereby constructing corresponding human/robot avatars that not only mimic the behaviors of the real agents but also experience the virtual world through virtual sensors and transmit the sensor data back to the real human/robot agent, all in real time. New cross-domain synthetic environments are created in RealTHASC using Unreal Engine™, bridging the simulation-to-reality gap and allowing for the inclusion of underwater/ground/aerial autonomous vehicles, each equipped with a multi-modal sensor suite. The experimental capabilities offered by RealTHASC are demonstrated through three case studies showcasing mixed real/virtual human/robot interactions in diverse domains, leveraging and complementing the benefits of experimentation in simulation and in the real world.

    more » « less
    Free, publicly-accessible full text available December 4, 2024
  2. Supported single-atom catalysts show a large range of activities and selectivities that depend on the local environment of the catalytic sites. A theory-based optimization strategy is presented that is based on a density functional theory determination of the transition states and intermediates for a low-dimensional coordinate representation of the heterogeneity of the active sites. The approach is applied to a vanadium catalyst on an amorphous SiO2 support that involves a large kinetic network described using a full chemistry model. Without assuming a priori scaling relations or mechanism reduction, the optimal state of heterogeneity is found to lie at atomic configurations where the activation energies for two distinct key chemical processes are equal. It is found a posteriori that the behavior of the system is consistent with linear free energy scaling relations in the randomness parameters. The energetic span theory proves quite useful in reducing the full chemistry model to a small number of key reactions. The use of a nonlinear optimization algorithm in combination with energetic span theory provides significant simplification in treating disordered systems. 
    more » « less
    Free, publicly-accessible full text available August 31, 2024
  3. Free, publicly-accessible full text available October 20, 2024
  4. Free, publicly-accessible full text available July 1, 2024
  5. Abstract

    The driving forces, kill and recovery mechanisms for the end-Permian mass extinction (EPME), the largest Phanerozoic biological crisis, are under debate. Sedimentary records of mercury enrichment and mercury isotopes have suggested the impact of volcanism on the EPME, yet the causes of mercury enrichment and isotope variations remain controversial. Here, we model mercury isotope variations across the EPME to quantitatively assess the effects of volcanism, terrestrial erosion and photic zone euxinia (PZE, toxic, sulfide-rich conditions). Our numerical model shows that while large-scale volcanism remains the main driver of widespread mercury enrichment, the negative shifts of Δ199Hg isotope signature across the EPME cannot be fully explained by volcanism or terrestrial erosion as proposed before, but require additional fractionation by marine mercury photoreduction under enhanced PZE conditions. Thus our model provides further evidence for widespread and prolonged PZE as a key kill mechanism for both the EPME and the impeded recovery afterward.

    more » « less