skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Cong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Abstract Multispecies mutualistic interactions are ubiquitous and essential in nature, yet they face several threats, many of which have been exacerbated in the Anthropocene era. Understanding the factors that drive the stability and persistence of mutualism has become increasingly important in light of global change. Although dispersal is widely recognized as a crucial spatially explicit process in maintaining biodiversity and community structure, knowledge about how the dispersal of mutualists contributes to the persistence of mutualistic systems remains limited. In this study, we used a synthetic mutualism formed by genetically modified budding yeast to investigate the effect of dispersal on the persistence and stability of mutualisms under exploitation. We found that dispersal increased the persistence of exploited mutualisms by 80% compared to the isolated systems. Furthermore, our results showed that dispersal increased local diversity, decreased beta diversity among local communities, and stabilized community structure at the regional scale. Our results indicate that dispersal can allow mutualisms to persist in meta-communities by reintroducing species that are locally competitively excluded by exploiters. With limited dispersal, e.g. due to increased fragmentation of meta-communities, mutualisms might be more prone to breakdown. Taken together, our results highlight the critical role of dispersal in facilitating the persistence of mutualism. 
    more » « less
  3. Free, publicly-accessible full text available February 1, 2026
  4. Free, publicly-accessible full text available December 10, 2025
  5. The concurrent execution of deep neural networks (DNN) inference tasks on intermittently-powered batteryless devices (IPDs) has recently garnered much attention due to its potential in a broad range of smart sensing applications. While the checkpointing mechanisms (CMs) provided by the state-of-the-art make this possible, scheduling inference tasks on IPDs is still a complex problem due to significant performance variations across DNN layers and CM choices. This complexity is further accentuated by dynamic environmental conditions and inherent resource constraints of IPDs. To tackle these challenges, we present MII, a framework designed for intermittence-aware inference and scheduling on IPDs. MII formulates the shutdown and live time functions of an IPD from profiling data, which our offline intermittence-aware search scheme uses to find optimal layer-wise CMs for each task. At runtime, MII enhances job success rates by dynamically making scheduling decisions to mitigate workload losses from power interruptions and adjusting these CMs in response to actual energy patterns. Our evaluation demonstrates the superiority of MII over the state-of-the-art. In controlled environments, MII achieves an average increase of 21% and 39% in successful jobs under stable and dynamic energy patterns. In real-world settings, MII achieves 33% and 24% more successful jobs indoors and outdoors. 
    more » « less
    Free, publicly-accessible full text available October 13, 2025
  6. Natural language processing (NLP) has gained widespread adoption in the development of real-world applications. However, the black-box nature of neural networks in NLP applications poses a challenge when evaluating their performance, let alone ensuring it. Recent research has proposed testing techniques to enhance the trustworthiness of NLP-based applications. However, most existing works use a single, aggregated metric (i.e., accuracy) which is difficult for users to assess NLP model performance on fine-grained aspects, such as LCs. To address this limitation, we present ALiCT, an automated testing technique for validating NLP applications based on their LCs. ALiCT takes user-specified LCs as inputs and produces diverse test suite with test oracles for each of given LC. We evaluate ALiCT on two widely adopted NLP tasks, sentiment analysis and hate speech detection, in terms of diversity, effectiveness, and consistency. Using Self-BLEU and syntactic diversity metrics, our findings reveal that ALiCT generates test cases that are 190% and 2213% more diverse in semantics and syntax, respectively, compared to those produced by state-of-the-art techniques. In addition, ALiCT is capable of producing a larger number of NLP model failures in 22 out of 25 LCs over the two NLP applications. 
    more » « less
    Free, publicly-accessible full text available September 30, 2025
  7. Deep learning-based code generation (DL-CG) applications have shown great potential for assisting developers in programming with human-competitive accuracy. However, lacking transparency in such applications due to the uninterpretable nature of deep learning models makes the automatically generated programs untrustworthy. In this paper, we develop DeciX, a first explanation method dedicated to DL-CG applications. DeciX is motivated by observing two unique properties of DL-CG applications: output-to-output dependencies and irrelevant value and semantic space. These properties violate the fundamental assumptions made in existing explainable DL techniques and thus cause applying existing techniques to DL-CG applications rather pessimistic and even incorrect. DeciX addresses these two limitations by constructing a causal inference dependency graph, containing a novel method leveraging causal inference that can accurately quantify the contribution of each dependency edge in the graph to the end prediction result. Proved by extensive experiments assessing popular, widely-used DL-CG applications and several baseline methods, DeciX is able to achieve significantly better performance compared to state-of-the-art in terms of several critical performance metrics, including correctness, succinctness, stability, and overhead. Furthermore, DeciX can be applied to practical scenarios since it does not require any knowledge of the DL-CG model under explanation. We have also conducted case studies that demonstrate the applicability of DeciX in practice. 
    more » « less
  8. In recent times, a plethora of Large Code Generation Models (LCGMs) have been proposed, showcasing significant potential in assisting developers with complex programming tasks. Within the surge of LCGM proposals, a critical aspect of code generation research involves effectively benchmarking the programming capabilities of models. Benchmarking LCGMs necessitates the creation of a set of diverse programming problems, and each problem comprises the prompt (including the task description), canonical solution, and test inputs. The existing methods for constructing such a problem set can be categorized into two main types: manual methods and perturbation-based methods. However, %both these methods exhibit major limitations. %Firstly, manually-based methods require substantial human effort and are not easily scalable. Moreover, programming problem sets created manually struggle to maintain long-term data integrity due to the greedy training data collection mechanism in LCGMs. On the other hand, perturbation-based approaches primarily produce semantically homogeneous problems, resulting in generated programming problems with identical Canonical Solutions to the seed problem. These methods also tend to introduce typos to the prompt, easily detectable by IDEs, rendering them unrealistic. manual methods demand high effort and lack scalability, while also risking data integrity due to LCGMs' potentially contaminated data collection, and perturbation-based approaches mainly generate semantically homogeneous problems with the same canonical solutions and introduce typos that can be easily auto-corrected by IDE, making them ineffective and unrealistic. Addressing the aforementioned limitations presents several challenges: (1) How to automatically generate semantically diverse Canonical Solutions to enable comprehensive benchmarking on the models, (2) how to ensure long-term data integrity to prevent data contamination, and (3) how to generate natural and realistic programming problems. To tackle the first challenge, we draw key insights from viewing a program as a series of mappings from the input to the output domain. These mappings can be transformed, split, reordered, or merged to construct new programs. Based on this insight, we propose programming problem merging, where two existing programming problems are combined to create new ones. In addressing the second challenge, we incorporate randomness to our programming problem-generation process. Our tool can probabilistically guarantee no data repetition across two random trials. To tackle the third challenge, we propose the concept of a Lambda Programming Problem, comprising a concise one-sentence task description in natural language accompanied by a corresponding program implementation. Our tool ensures the program prompt is grammatically correct. Additionally, the tool leverages return value type analysis to verify the correctness of newly created Canonical Solutions. In our empirical evaluation, we utilize our tool on two widely-used datasets and compare it against nine baseline methods using eight code generation models. The results demonstrate the effectiveness of our tool in generating more challenging, diverse, and natural programming problems, comparing to the baselines. 
    more » « less
  9. Pellizzoni, Rodolfo (Ed.)
    Scheduling real-time tasks that utilize GPUs with analyzable guarantees poses a significant challenge due to the intricate interaction between CPU and GPU resources, as well as the complex GPU hardware and software stack. While much research has been conducted in the real-time research community, several limitations persist, including the absence or limited availability of GPU-level preemption, extended blocking times, and/or the need for extensive modifications to program code. In this paper, we propose GCAPS, a GPU Context-Aware Preemptive Scheduling approach for real-time GPU tasks. Our approach exerts control over GPU context scheduling at the device driver level and enables preemption of GPU execution based on task priorities by simply adding one-line macros to GPU segment boundaries. In addition, we provide a comprehensive response time analysis of GPU-using tasks for both our proposed approach as well as the default Nvidia GPU driver scheduling that follows a work-conserving round-robin policy. Through empirical evaluations and case studies, we demonstrate the effectiveness of the proposed approaches in improving taskset schedulability and response time. The results highlight significant improvements over prior work as well as the default scheduling approach, with up to 40% higher schedulability, while also achieving predictable worst-case behavior on Nvidia Jetson embedded platforms. 
    more » « less