skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Fan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Chemical abundance anomalies in twin stars have recently been considered tell-tale signs of interactions between stars and planets. While such signals are prevalent, their nature remains a subject of debate. On the one hand, exoplanet formation may induce chemical depletion in host stars by locking up refractory elements. On the other hand, exoplanet engulfment can result in chemical enrichment, and both processes potentially produce similar differential signals. In this study, we aim to observationally disentangle these processes by using the Ca ii infrared triplet to measure the magnetic activity of 125 co-moving star pairs with high signal-to-noise ratio, and high-resolution spectra from the Magellan, Keck, and VLT (Very Large Telescope) telescopes. We find that co-natal star pairs in which the two stars exhibit significant chemical abundance differences also show differences in their magnetic activity, with stars depleted in refractories being magnetically more active. Furthermore, the strength of this correlation between differential chemical abundances and differential magnetic activity increases with condensation temperature. One possible explanation is that the chemical anomaly signature may be linked to planet formation, wherein refractory elements are locked into planets, and the host stars become more active due to more efficient contraction during the pre-main-sequence phase or star–planet tidal and magnetic interactions. 
    more » « less
  2. null (Ed.)
  3. Abstract Background Brassica oleracea includes several morphologically diverse, economically important vegetable crops, such as the cauliflower and cabbage. However, genetic variants, especially large structural variants (SVs), that underlie the extreme morphological diversity of B. oleracea remain largely unexplored. Results Here we present high-quality chromosome-scale genome assemblies for two B. oleracea morphotypes, cauliflower and cabbage. Direct comparison of these two assemblies identifies ~ 120 K high-confidence SVs. Population analysis of 271 B. oleracea accessions using these SVs clearly separates different morphotypes, suggesting the association of SVs with B. oleracea intraspecific divergence. Genes affected by SVs selected between cauliflower and cabbage are enriched with functions related to response to stress and stimulus and meristem and flower development. Furthermore, genes affected by selected SVs and involved in the switch from vegetative to generative growth that defines curd initiation, inflorescence meristem proliferation for curd formation, maintenance and enlargement, are identified, providing insights into the regulatory network of curd development. Conclusions This study reveals the important roles of SVs in diversification of different morphotypes of B. oleracea , and the newly assembled genomes and the SVs provide rich resources for future research and breeding. 
    more » « less