Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Chemical abundance anomalies in twin stars have recently been considered tell-tale signs of interactions between stars and planets. While such signals are prevalent, their nature remains a subject of debate. On the one hand, exoplanet formation may induce chemical depletion in host stars by locking up refractory elements. On the other hand, exoplanet engulfment can result in chemical enrichment, and both processes potentially produce similar differential signals. In this study, we aim to observationally disentangle these processes by using the Ca ii infrared triplet to measure the magnetic activity of 125 co-moving star pairs with high signal-to-noise ratio, and high-resolution spectra from the Magellan, Keck, and VLT (Very Large Telescope) telescopes. We find that co-natal star pairs in which the two stars exhibit significant chemical abundance differences also show differences in their magnetic activity, with stars depleted in refractories being magnetically more active. Furthermore, the strength of this correlation between differential chemical abundances and differential magnetic activity increases with condensation temperature. One possible explanation is that the chemical anomaly signature may be linked to planet formation, wherein refractory elements are locked into planets, and the host stars become more active due to more efficient contraction during the pre-main-sequence phase or star–planet tidal and magnetic interactions.more » « less
-
Abstract Protonic ceramic electrochemical cells (PCECs) represent a promising class of solid‐state energy conversion devices capable of high‐efficiency hydrogen production and power generation. However, the practical deployment of planar PCECs is fundamentally constrained by severe structural deformation and mechanical failure during fabrication, stemming from asymmetric shrinkage between the thin electrolyte and the thick NiO‐based support layer. In this work, a functionally integrated, symmetry‐engineered double‐sided electrolyte (DE) design is unveiled, which not only suppresses thermally induced curvature but also unlocks significant gains in electrochemical performance and stability. This architecture intrinsically balances shrinkage dynamics across the cell bilaterally, enabling the fabrication of ultra‐flat 5 × 5 cm2cells with sub‐100 µm thickness variation. A numerical solid mechanics simulation is introduced to investigate and interpret this achievement. Beyond structural advantages, the DE configuration enhances the cell operational stability, delivering a low open‐circuit voltage degradation of 9.5 mV/100 h across 80 thermal cycles. This work establishes a compelling paradigm wherein architectural symmetry directly translates to both mechanical fidelity and functional enhancement, offering a promising route toward PCECs scale‐up.more » « lessFree, publicly-accessible full text available October 28, 2026
An official website of the United States government
