skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Fenglin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The adoption of large language models (LLMs) in healthcare has garnered significant research interest, yet their performance remains limited due to a lack of domain‐specific knowledge, medical reasoning skills, and their unimodal nature, which restricts them to text‐only inputs. To address these limitations, we propose MultiMedRes, a multimodal medical collaborative reasoning framework that simulates human physicians’ communication by incorporating a learner agent to proactively acquire information from domain‐specific expert models. MultiMedRes addresses medical multimodal reasoning problems through three steps i) Inquire: The learner agent decomposes complex medical reasoning problems into multiple domain‐specific sub‐problems; ii) Interact: The agent engages in iterative “ask‐answer” interactions with expert models to obtain domain‐specific knowledge; and iii) Integrate: The agent integrates all the acquired domain‐specific knowledge to address the medical reasoning problems (e.g., identifying the difference of disease levels and abnormality sizes between medical images). We validate the effectiveness of our method on the task of difference visual question answering for X‐ray images. The experiments show that our zero‐shot prediction achieves state‐of‐the‐art performance, surpassing fully supervised methods, which demonstrates that MultiMedRes could offer trustworthy and interpretable assistance to physicians in monitoring the treatment progression of patients, paving the way for effective human–AI interaction and collaboration. 
    more » « less
    Free, publicly-accessible full text available February 5, 2026