skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Gaowen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 24, 2026
  2. Free, publicly-accessible full text available July 1, 2026
  3. Vector Symbolic Architecture (VSA) is emerging in machine learning due to its efficiency, but they are hindered by issues of hyperdimensionality and accuracy. As a promising mitigation, the Low-Dimensional Computing (LDC) method significantly reduces the vector dimension by 100 times while maintaining accuracy, by employing a gradient-based optimization. Despite its potential, LDC optimization for VSA is still underexplored. Our investigation into vector updates underscores the importance of stable, adaptive dynamics in LDC training. We also reveal the overlooked yet critical roles of batch normalization (BN) and knowledge distillation (KD) in standard approaches. Besides the accuracy boost, BN does not add computational overhead during inference, and KD significantly enhances inference confidence. Through extensive experiments and ablation studies across multiple benchmarks, we provide a thorough evaluation of our approach and extend the interpretability of binary neural network optimization similar to LDC, previously unaddressed in BNN literature. 
    more » « less
    Free, publicly-accessible full text available March 6, 2026
  4. This paper investigates how to efficiently deploy vision transformers on edge devices for small workloads. Recent methods reduce the latency of transformer neural networks by removing or merging tokens, with small accuracy degradation. However, these methods are not designed with edge device deployment in mind: they do not leverage information about the latency-workload trends to improve efficiency. We address this shortcoming in our work. First, we identify factors that affect ViT latency-workload relationships. Second, we determine token pruning schedule by leveraging non-linear latency-workload relationships. Third, we demonstrate a training-free, token pruning method utilizing this schedule. We show other methods may increase latency by 2-30%, while we reduce latency by 9-26%. For similar latency (within 5.2% or 7ms) across devices we achieve 78.6%-84.5% ImageNet1K accuracy, while the state-of-the-art, Token Merging, achieves 45.8%-85.4%. 
    more » « less
    Free, publicly-accessible full text available February 28, 2026
  5. Free, publicly-accessible full text available December 10, 2025
  6. Free, publicly-accessible full text available February 26, 2026