Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Polarized fluorescence microscopy is a valuable tool for measuring molecular orientations in biological samples, but techniques for recovering three-dimensional orientations and positions of fluorescent ensembles are limited. We report a polarized dual-view light-sheet system for determining the diffraction-limited three-dimensional distribution of the orientations and positions of ensembles of fluorescent dipoles that label biological structures. We share a set of visualization, histogram, and profiling tools for interpreting these positions and orientations. We model the distributions based on the polarization-dependent efficiency of excitation and detection of emitted fluorescence, using coarse-grained representations we call orientation distribution functions (ODFs). We apply ODFs to create physics-informed models of image formation with spatio-angular point-spread and transfer functions. We use theory and experiment to conclude that light-sheet tilting is a necessary part of our design for recovering all three-dimensional orientations. We use our system to extend known two-dimensional results to three dimensions in FM1-43-labeled giant unilamellar vesicles, fast-scarlet-labeled cellulose in xylem cells, and phalloidin-labeled actin in U2OS cells. Additionally, we observe phalloidin-labeled actin in mouse fibroblasts grown on grids of labeled nanowires and identify correlations between local actin alignment and global cell-scale orientation, indicating cellular coordination across length scales.more » « less
- 
            Dynamic positron emission tomography (dPET) is a nuclear medical imaging technology that shows the changes in radioactivity over time. In this article, we propose a structure and tracer kinetics-constrained reconstruction framework for dPET imaging. Given the Poisson nature of PET imaging, we integrate the sparse penalty on a dual dictionary into a Poisson-likelihood estimator. Explicit anatomical constraints with a structural dictionary constructed from magnetic resonance or computed tomography images are employed to take advantage of the anatomical imaging modalities. In the kinetic dictionary, we treat tracer kinetics as random variables in a physiologically plausible range based on a compartmental model. We demonstrate the performance of our proposed framework with a direct simulated data set and real patient data.more » « less
- 
            Reconstructing images from multi-view projections is a crucial task both in the computer vision community and in the medical imaging community, and dynamic positron emission tomography (PET) is no exception. Unfortunately, image quality is inevitably degraded by the limitations of photon emissions and the trade-off between temporal and spatial resolution. In this paper, we develop a novel tensor based nonlocal low-rank framework for dynamic PET reconstruction. Spatial structures are effectively enhanced not only by nonlocal and sparse features, but momentarily by tensor-formed low-rank approximations in the temporal realm. Moreover, the total variation is well regularized as a complementation for denoising. These regularizations are efficiently combined into a Poisson PET model and jointly solved by distributed optimization. The experiments demonstrated in this paper validate the excellent performance of the proposed method in dynamic PET.more » « less
- 
            In this study, we explore the use of low rank and sparse constraints for the noninvasive estimation of epicardial and endocardial extracellular potentials from body-surface electrocardiographic data to locate the focus of premature ventricular contractions (PVCs). The proposed strategy formulates the dynamic spatiotemporal distribution of cardiac potentials by means of low rank and sparse decomposition, where the low rank term represents the smooth background and the anomalous potentials are extracted in the sparse matrix. Compared to the most previous potential-based approaches, the proposed low rank and sparse constraints are batch spatiotemporal constraints that capture the underlying relationship of dynamic potentials. The resulting optimization problem is solved using alternating direction method of multipliers . Three sets of simulation experiments with eight different ventricular pacing sites demonstrate that the proposed model outperforms the existing Tikhonov regularization (zero-order, second-order) and L1-norm based method at accurately reconstructing the potentials and locating the ventricular pacing sites. Experiments on a total of 39 cases of real PVC data also validate the ability of the proposed method to correctly locate ectopic pacing sites.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
