skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Jed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To achieve good performance, modern applications often partition and replicate their state across multiple geographically-distributed nodes. While this approach reduces latency in the common case, it can be challenging for programmers to use correctly, especially in applications that require strong consistency. We show how to achieve strong consistency while avoiding coordination by using predictive treaties, a mechanism that can significantly reduce distributed coordination without losing strong consistency. The central insight behind our approach is that many computations can be expressed in terms of predicates over distributed state that can be partitioned and enforced locally. Predictive treaties improve on previous work by allowing the locally enforced predicates to depend on time. Intuitively, by predicting the evolution of system state, coordination can be significantly reduced compared to static approaches. We implemented predictive treaties in a distributed system that exposes them via an intuitive programming model. We evaluate performance on several benchmarks, including TPC-C, showing that predictive treaties can significantly increase performance by orders of magnitude and can even outperform customized algorithms. 
    more » « less