Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Liquid crystal elastomers that offer exceptional load-deformation response at low frequencies often require consideration of the mechanical anisotropy only along the two symmetry directions. However, emerging applications operating at high frequencies require all five true elastic constants. Here, we utilize Brillouin light spectroscopy to obtain the engineering moduli and probe the strain dependence of the elasticity anisotropy at gigahertz frequencies. The Young’s modulus anisotropy, E || / E ⊥ ~2.6, is unexpectedly lower than that measured by tensile testing, suggesting disparity between the local mesogenic orientation and the larger scale orientation of the network strands. Unprecedented is the robustness of E || / E ⊥ to uniaxial load that it does not comply with continuously transformable director orientation observed in the tensile testing. Likewise, the heat conductivity is directional, κ || / κ ⊥ ~3.0 with κ ⊥ = 0.16 Wm −1 K −1 . Conceptually, this work reveals the different length scales involved in the thermoelastic anisotropy and provides insights for programming liquid crystal elastomers on-demand for high-frequency applications.more » « less
-
A ubiquitous structural feature in biological systems is texture in extracellular matrix that gains functions when hardened, for example, cell walls, insect scales, and diatom tests. Here, we develop patterned liquid crystal elastomer (LCE) particles by recapitulating the biophysical patterning mechanism that forms pollen grain surfaces. In pollen grains, a phase separation of extracellular material into a pattern of condensed and fluid-like phases induces undulations in the underlying elastic cell membrane to form patterns on the cell surface. In this work, LCE particles with variable surface patterns were created through a phase separation of liquid crystal oligomers (LCOs) droplet coupled to homeotropic anchoring at the droplet interface, analogously to the pollen grain wall formation. Specifically, nematically ordered polydisperse LCOs and isotropic organic solvent (dichloromethane) phase-separate at the surface of oil-in-water droplets, while, different LCO chain lengths segregate to different surface curvatures simultaneously. This phase separation, which creates a distortion in the director field, is in competition with homeotropic anchoring induced by sodium dodecyl sulfate (SDS). By tuning the polymer chemistry of the system, we are able to influence this separation process and tune the types of surface patterns in these pollen-like microparticles. Our study reveals that the energetically favorable biological mechanism can be leveraged to offer simple yet versatile approaches to synthesize microparticles for mechanosensing, tissue engineering, drug delivery, energy storage, and displays.
-
Soft robots, with their agile locomotion and responsiveness to environment, have attracted great interest in recent years. Liquid crystal elastomers (LCEs), known for their reversible and anisotropic deformation, are promising candidates as embedded intelligent actuators in soft robots. So far, most studies on LCEs have focused on achieving complex deformation in thin films over centimeter‐scale areas with relatively small specific energy densities. Herein, using an extrusion process, meter‐long LCE composite filaments that are responsive to both infrared light and electrical fields are fabricated. In the composite filaments, a small quantity of cellulose nanocrystals (CNCs) is incorporated to facilitate the alignment of liquid crystal molecules along the long axis of the filament. Up to 2 wt% carbon nanotubes (CNTs) is introduced into a LCE matrix without aggregation, which in turn greatly improves the mechanical property of filaments and their actuation speed, where the Young's modulus along the long axis reaches 40 MPa, the electrothermal response time is within 10 s. The maximum work capacity is 38 J kg−1with 2 wt% CNT loading. Finally, shape transformation and locomotion in several soft robotics systems achieved by the dual‐responsive LCE/CNT composite filament actuators are demonstrated.