- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
01000010000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Liu, Jinyun (2)
-
Agrawal, Sumit (1)
-
Chang, Yaohua (1)
-
Chen, Haoyang (1)
-
Chen, Lidong (1)
-
Drew, Patrick_J (1)
-
Gaddale, Prameth (1)
-
Gluckman, Bruce_J (1)
-
Kothapalli, Sri‐Rajasekhar (1)
-
Li, Menghan (1)
-
Li, Qiong (1)
-
Lin, Benjamin (1)
-
Liu, Xiao (1)
-
Mirg, Shubham (1)
-
Nguyen, Van (1)
-
Tu, Wenyu (1)
-
Xu, Tianbao (1)
-
Zhang, Nanyin (1)
-
Zhu, Zhigang (1)
-
Zou, Yin (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Accurate indoor positioning has attracted a lot of attention for a variety of indoor location-based applications, with the rapid development of mobile devices and their onboard sensors. A hybrid indoor localization method is proposed based on single off-the-shelf smartphone, which takes advantage of its various onboard sensors, including camera, gyroscope and accelerometer. The proposed approach integrates three components: visual-inertial odometry (VIO), point-based area mapping, and plane-based area mapping. A simplified RANSAC strategy is employed in plane matching for the sake of processing time. Since Apple's augmented reality platform ARKit has many powerful high-level APIs on world tracking, plane detection and 3D modeling, a practical smartphone app for indoor localization is developed on an iPhone that can run ARKit. Experimental results demonstrate that our plane-based method can achieve an accuracy of about 0.3 meter, which is based on a much more lightweight model, but achieves more accurate results than the point-based model by directly using ARKit's area mapping. The size of the plane-based model is less than 2KB for a closed-loop corridor area of about 45m*15m, comparing to about 10MB of the point-based model.more » « less
-
Chen, Haoyang ; Mirg, Shubham ; Gaddale, Prameth ; Agrawal, Sumit ; Li, Menghan ; Nguyen, Van ; Xu, Tianbao ; Li, Qiong ; Liu, Jinyun ; Tu, Wenyu ; et al ( , Advanced Science)
Abstract Studying brain‐wide hemodynamic responses to different stimuli at high spatiotemporal resolutions can help gain new insights into the mechanisms of neuro‐ diseases and ‐disorders. Nonetheless, this task is challenging, primarily due to the complexity of neurovascular coupling, which encompasses interdependent hemodynamic parameters including cerebral blood volume (CBV), cerebral blood flow (CBF), and cerebral oxygen saturation (SO2). The current brain imaging technologies exhibit inherent limitations in resolution, sensitivity, and imaging depth, restricting their capacity to comprehensively capture the intricacies of cerebral functions. To address this, a multimodal functional ultrasound and photoacoustic (fUSPA) imaging platform is reported, which integrates ultrafast ultrasound and multispectral photoacoustic imaging methods in a compact head‐mountable device, to quantitatively map individual dynamics of CBV, CBF, and SO2as well as contrast agent enhanced brain imaging at high spatiotemporal resolutions. Following systematic characterization, the fUSPA system is applied to study brain‐wide cerebrovascular reactivity (CVR) at single‐vessel resolution via relative changes in CBV, CBF, and SO2in response to hypercapnia stimulation. These results show that cortical veins and arteries exhibit differences in CVR in the stimulated state and consistent anti‐correlation in CBV oscillations during the resting state, demonstrating the multiparametric fUSPA system's unique capabilities in investigating complex mechanisms of brain functions.