- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Liu, Joseph (3)
-
Bae, Jinhye (2)
-
Li, Minghao (2)
-
Zhao, Jiayu (2)
-
Chen, Jiahui (1)
-
Ding, Jintai (1)
-
Guan, Zhecun (1)
-
Han, Tae Hee (1)
-
Ho, Brandon (1)
-
Howard, Elizabeth (1)
-
Ji, Donghwan (1)
-
Li, Xiao (1)
-
Ling, Jie (1)
-
Ning, Jianting (1)
-
Rho, Yumi (1)
-
Shin, Hwansoo (1)
-
Tang, Lisa (1)
-
Wheeler, Rebecca (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Achieving a simple yet sustainable printing technique with minimal instruments and energy remains challenging. Here, a facile and sustainable 3D printing technique is developed by utilizing a reversible salting-out effect. The salting-out effect induced by aqueous salt solutions lowers the phase transition temperature of poly(N-isopropylacrylamide) (PNIPAM) solutions to below 10 °C. It enables the spontaneous and instant formation of physical crosslinks within PNIPAM chains at room temperature, thus allowing the PNIPAM solution to solidify upon contact with a salt solution. The PNIPAM solutions are extrudable through needles and can immediately solidify by salt ions, preserving printed structures, without rheological modifiers, chemical crosslinkers, and additional post-processing steps/equipment. The reversible physical crosslinking and de-crosslinking of the polymer through the salting-out effect demonstrate the recyclability of the polymeric ink. This printing approach extends to various PNIPAM-based composite solutions incorporating functional materials or other polymers, which offers great potential for developing water-soluble disposable electronic circuits, carriers for delivering small materials, and smart actuators.more » « less
-
Chen, Jiahui; Ling, Jie; Ning, Jianting; Ding, Jintai; Liu, Joseph (, The Computer Journal)Abstract In this paper, we proposed an idea to construct a general multivariate public key cryptographic (MPKC) scheme based on a user’s identity. In our construction, each user is distributed a unique identity by the key distribution center (KDC) and we use this key to generate user’s private keys. Thereafter, we use these private keys to produce the corresponding public key. This method can make key generating process easier so that the public key will reduce from dozens of Kilobyte to several bits. We then use our general scheme to construct practical identity-based signature schemes named ID-UOV and ID-Rainbow based on two well-known and promising MPKC signature schemes, respectively. Finally, we present the security analysis and give experiments for all of our proposed schemes and the baseline schemes. Comparison shows that our schemes are both efficient and practical.more » « less
-
Ho, Brandon; Zhao, Jiayu; Liu, Joseph; Tang, Lisa; Guan, Zhecun; Li, Xiao; Li, Minghao; Howard, Elizabeth; Wheeler, Rebecca; Bae, Jinhye (, ACS Materials Letters)
An official website of the United States government
