- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Liu, Julie C (2)
-
Breur, Gert J (1)
-
Brown, Caitlin E (1)
-
Crain, Christa J (1)
-
Hollingshead, Sydney (1)
-
Liu, Julie C. (1)
-
Menon, Aishwarya V (1)
-
Narayanan, Sanjeev K (1)
-
Putnam‐Neeb, Amelia A (1)
-
Torres, Jessica E (1)
-
Torres, Jessica E. (1)
-
Wilker, Jonathan J (1)
-
Wilker, Jonathan J. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
To increase interest in chemical engineering and introduce non-traditional chemical engineering fields to high school women, an outreach activity focused on the biomedical applications of polymers was developed. Surveys given to students before and after the activity demonstrated greater agreement with the statements “I am interested in chemical engineering” and “Chemical engineers help people” after the activity. Additionally, there was better alignment between students’ aspirations and chemical engineering as a result of the activity.more » « less
-
Menon, Aishwarya V; Putnam‐Neeb, Amelia A; Brown, Caitlin E; Crain, Christa J; Breur, Gert J; Narayanan, Sanjeev K; Wilker, Jonathan J; Liu, Julie C (, Journal of Biomedical Materials Research Part A)Abstract Wound closure in surgeries is traditionally achieved using invasive methods such as sutures and staples. Adhesion‐based wound closure methods such as tissue adhesives, sealants, and hemostats are slowly replacing these methods due to their ease of application. Although several chemistries have been developed and used commercially for wound closure, there is still a need for better tissue adhesives from the point of view of toxicity, wet‐adhesion strength, and long‐term bonding. Catechol chemistry has shown great promise in developing wet‐set adhesives that meet these criteria. Herein, we have studied the biocompatibility of a catechol‐based copolymer adhesive, poly([dopamine methacrylamide]‐co‐[methyl methacrylate]‐co‐[poly(ethylene glycol) methyl ether methacrylate]) or poly(catechol‐MMA‐OEG), which is soluble in water. The adhesive was injected subcutaneously in a mouse model on its own and in combination with a sodium periodate crosslinker. After 72 h, 4 weeks, and 12 weeks, the mice were euthanized and subjected to histopathological analysis. Both adhesives were present and still palpable at the end of 12 weeks. The moderate inflammation observed for the poly(catechol‐MMA‐OEG) cohort at 72 h had reduced to mild inflammation at the end of 12 weeks. However, the moderate inflammatory response observed for the poly(catechol‐MMA‐OEG) + crosslinker cohort at 72 h had not subsided at 12 weeks.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Hollingshead, Sydney; Torres, Jessica E.; Wilker, Jonathan J.; Liu, Julie C. (, ACS Applied Bio Materials)
An official website of the United States government
