skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Junyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Our study evaluates the limitations and potentials of Quantum Random Access Memory (QRAM) within the principles of quantum physics and relativity. QRAM is crucial for advancing quantum algorithms in fields like linear algebra and machine learning, purported to efficiently manage large data sets with$${{{\mathcal{O}}}}(\log N)$$ O ( log N ) circuit depth. However, its scalability is questioned when considering the relativistic constraints on qubits interacting locally. Utilizing relativistic quantum field theory and Lieb–Robinson bounds, we delve into the causality-based limits of QRAM. Our investigation introduces a feasible QRAM model in hybrid quantum acoustic systems, capable of supporting a significant number of logical qubits across different dimensions-up to ~107in 1D, ~1015to ~1020in 2D, and ~1024in 3D, within practical operation parameters. This analysis suggests that relativistic causality principles could universally influence quantum computing hardware, underscoring the need for innovative quantum memory solutions to navigate these foundational barriers, thereby enhancing future quantum computing endeavors in data science. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract Large machine learning models are revolutionary technologies of artificial intelligence whose bottlenecks include huge computational expenses, power, and time used both in the pre-training and fine-tuning process. In this work, we show that fault-tolerant quantum computing could possibly provide provably efficient resolutions for generic (stochastic) gradient descent algorithms, scaling as$${{{{{{{\mathcal{O}}}}}}}}({T}^{2}\times {{{{{{{\rm{polylog}}}}}}}}(n))$$ O ( T 2 × polylog ( n ) ) , wherenis the size of the models andTis the number of iterations in the training, as long as the models are both sufficiently dissipative and sparse, with small learning rates. Based on earlier efficient quantum algorithms for dissipative differential equations, we find and prove that similar algorithms work for (stochastic) gradient descent, the primary algorithm for machine learning. In practice, we benchmark instances of large machine learning models from 7 million to 103 million parameters. We find that, in the context of sparse training, a quantum enhancement is possible at the early stage of learning after model pruning, motivating a sparse parameter download and re-upload scheme. Our work shows solidly that fault-tolerant quantum algorithms could potentially contribute to most state-of-the-art, large-scale machine-learning problems. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract We definelazinessto describe a large suppression of variational parameter updates for neural networks, classical or quantum. In the quantum case, the suppression is exponential in the number of qubits for randomized variational quantum circuits. We discuss the difference between laziness andbarren plateauin quantum machine learning created by quantum physicists in McCleanet al(2018Nat. Commun.91–6) for the flatness of the loss function landscape during gradient descent. We address a novel theoretical understanding of those two phenomena in light of the theory of neural tangent kernels. For noiseless quantum circuits, without the measurement noise, the loss function landscape is complicated in the overparametrized regime with a large number of trainable variational angles. Instead, around a random starting point in optimization, there are large numbers of local minima that are good enough and could minimize the mean square loss function, where we still have quantum laziness, but we do not have barren plateaus. However, the complicated landscape is not visible within a limited number of iterations, and low precision in quantum control and quantum sensing. Moreover, we look at the effect of noises during optimization by assuming intuitive noise models, and show that variational quantum algorithms are noise-resilient in the overparametrization regime. Our work precisely reformulates the quantum barren plateau statement towards a precision statement and justifies the statement in certain noise models, injects new hope toward near-term variational quantum algorithms, and provides theoretical connections toward classical machine learning. Our paper provides conceptual perspectives about quantum barren plateaus, together with discussions about the gradient descent dynamics in Liuet al(2023Phys. Rev. Lett.130150601). 
    more » « less
  4. A quantum version of data centers might be significant in the quantum era. In this paper, we introduce Quantum Data Center (QDC) [1], a quantum version of existing classical data centers, with a specific emphasis on combining Quantum Random Access Memory (QRAM) and quantum networks. We argue that QDC will provide significant benefits to customers in terms of efficiency, security, and precision, and will be helpful for quantum computing, communication, and sensing. We investigate potential scientific and business opportunities along this novel research direction through hardware realization and possible specific applications. We show the possible impacts of QDCs in business and science, especially the machine learning and big data industries. 
    more » « less
  5. Polarized fluorescence microscopy is a valuable tool for measuring molecular orientations in biological samples, but techniques for recovering three-dimensional orientations and positions of fluorescent ensembles are limited. We report a polarized dual-view light-sheet system for determining the diffraction-limited three-dimensional distribution of the orientations and positions of ensembles of fluorescent dipoles that label biological structures. We share a set of visualization, histogram, and profiling tools for interpreting these positions and orientations. We model the distributions based on the polarization-dependent efficiency of excitation and detection of emitted fluorescence, using coarse-grained representations we call orientation distribution functions (ODFs). We apply ODFs to create physics-informed models of image formation with spatio-angular point-spread and transfer functions. We use theory and experiment to conclude that light-sheet tilting is a necessary part of our design for recovering all three-dimensional orientations. We use our system to extend known two-dimensional results to three dimensions in FM1-43-labeled giant unilamellar vesicles, fast-scarlet-labeled cellulose in xylem cells, and phalloidin-labeled actin in U2OS cells. Additionally, we observe phalloidin-labeled actin in mouse fibroblasts grown on grids of labeled nanowires and identify correlations between local actin alignment and global cell-scale orientation, indicating cellular coordination across length scales. 
    more » « less
  6. Gaussian boson sampling, a computational model that is widely believed to admit quantum supremacy, has already been experimentally demonstrated and is claimed to surpass the classical simulation capabilities of even the most powerful supercomputers today. However, whether the current approach limited by photon loss and noise in such experiments prescribes a scalable path to quantum advantage is an open question. To understand the effect of photon loss on the scalability of Gaussian boson sampling, we analytically derive the asymptotic operator entanglement entropy scaling, which relates to the simulation complexity. As a result, we observe that efficient tensor network simulations are likely possible under the Nout ~ \sqrt(N) scaling of the number of surviving photons Nout in the number of input photons N. We numerically verify this result using a tensor network algorithm with U(1) symmetry, and we overcome previous challenges due to the large local Hilbert-space dimensions in Gaussian boson sampling with hardware acceleration. Additionally, we observe that increasing the photon number through larger squeezing does not increase the entanglement entropy significantly. Finally, we numerically find the bond dimension necessary for fixed accuracy simulations, providing more direct evidence for the complexity of tensor networks. 
    more » « less
  7. In this paper, we propose the Quantum Data Center (QDC), an architecture combining Quantum Random Access Memory (QRAM) and quantum networks. We give a precise definition of QDC, and discuss its possible realizations and extensions. We discuss applications of QDC in quantum computation, quantum communication, and quantum sensing, with a primary focus on QDC for T-gate resources, QDC for multi-party private quantum communication, and QDC for distributed sensing through data compression. We show that QDC will provide efficient, private, and fast services as a future version of data centers. 
    more » « less