skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Lucy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Controlling the connectivity and rigidity of kirigami, i.e. the process of cutting paper to deploy it into an articulated system, is critical in the manifestations of kirigami in art, science and technology, as it provides the resulting metamaterial with a range of mechanical and geometric properties. Here, we combine deterministic and stochastic approaches for the control of rigidity in kirigami using the power of k choices, an approach borrowed from the statistical mechanics of explosive percolation transitions. We show that several methods for rigidifying a kirigami system by incrementally changing either the connectivity or the rigidity of individual components allow us to control the nature of the explosive transition by a choice of selection rules. Our results suggest simple lessons for the design of mechanical metamaterials. 
    more » « less
  2. null (Ed.)
    Kirigami, the art of paper cutting, has become a paradigm for mechanical metamaterials in recent years. The basic building blocks of any kirigami structures are repetitive deployable patterns that derive inspiration from geometric art forms and simple planar tilings. Here, we complement these approaches by directly linking kirigami patterns to the symmetry associated with the set of 17 repeating patterns that fully characterize the space of periodic tilings of the plane. We start by showing how to construct deployable kirigami patterns using any of the wallpaper groups, and then design symmetry-preserving cut patterns to achieve arbitrary size changes via deployment. We further prove that different symmetry changes can be achieved by controlling the shape and connectivity of the tiles and connect these results to the underlying kirigami-based lattice structures. All together, our work provides a systematic approach for creating a broad range of kirigami-based deployable structures with any prescribed size and symmetry properties. 
    more » « less