Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tran, Duc ; Thai, My ; Krishnamachari, Bhaskar (Ed.)The security and performance of blockchain systems such as Bitcoin critically rely on the P2P network. This paper aims to investigate blockchain P2P networks. We explore the topologies, peer discovery, and data forwarding and examine the security and performance of the P2P network. Further, we formulate an optimization problem to study the theoretical limit of the performance and provide a solution to achieve optimal performance in a blockchain P2P network.Free, publicly-accessible full text available November 1, 2023
-
Free, publicly-accessible full text available November 1, 2023
-
Free, publicly-accessible full text available March 15, 2024
-
Water soluble ferrocene (Fc) derivatives are promising cathode materials for aqueous organic redox flow batteries (AORFBs) towards scalable energy storage. However, their structure–performance relationship and degradation mechanism in aqueous electrolytes remain unclear. Herein, physicochemical and electrochemical properties, battery performance, and degradation mechanisms of three Fc catholytes, (ferrocenylmethyl)trimethylammonium chloride (C1-FcNCl), (2-ferrocenyl-ethyl)trimethylammonium chloride (C2-FcNCl), and (3-ferrocenyl-propyl)trimethylammonium chloride (C3-FcNCl) in pH neutral aqueous electrolytes were systemically investigated. UV-Vis and gas chromatography (GC) studies confirmed the thermal and photolytic C x -Cp − ligand dissociation decomposition pathways of both discharged and charged states of C1-FcNCl and C2-FcNCl catholytes. In contrast, in the case of the C3-FcNCl catholyte, the electron-donating 3-(trimethylammonium)propyl group strengthens the coordination between the C 3 -Cp − ligand and the Fe 3+ or Fe 2+ center and thus mitigates the ligand-dissociation degradation. Consistently, the Fc electrolytes displayed cycling stability in both half-cell and full-cell flow batteries in the order of C1-FcNCl < C2-FcNCl < C3-FcNCl.
-
Free, publicly-accessible full text available December 16, 2023
-
Free, publicly-accessible full text available December 16, 2023
-
Free, publicly-accessible full text available September 11, 2023
-
Context. The role of large-scale magnetic fields in the evolution of star-forming regions remains elusive. Its investigation requires the observational characterization of well-constrained molecular clouds. The Monoceros OB 1 molecular cloud is a large complex containing several structures that have been shown to be engaged in an active interaction and to have a rich star formation history. However, the magnetic fields in this region have only been studied on small scales. Aims. We study the large-scale magnetic field structure and its interplay with the gas dynamics in the Monoceros OB 1 east molecular cloud. Methods. We combined observations of dust polarized emission from the Planck telescope and CO molecular line emission observations from the Taeduk Radio Astronomy Observatory 14-metre telescope. We calculated the strength of the plane-of-sky magnetic field using a modified Chandrasekhar-Fermi method and estimated the mass-over-flux ratios in different regions of the cloud. We used the comparison of the velocity and intensity gradients of the molecular line observations with the polarimetric observations to trace dynamically active regions. Results. The molecular complex shows an ordered large-scale plane-of-sky magnetic field structure. In the northern part, it is mostly orientated along the filamentary structures, while the southern part shows at leastmore »