skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Terry Z."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In the ion foreshock, there are many foreshock transients driven by back streaming foreshock ions. When the foreshock ions interact with tangential discontinuities (TDs), hot flow anomalies form if the foreshock ion‐driven current decreases field strength at TDs, but the opposite situation has been paid little attention. Using 2.5‐D local hybrid simulations, we show that a compressional boundary with enhanced field strength and density can form. We examine how the foreshock ions interact with TDs under various magnetic field geometries to drive currents that lead to compressional boundaries. The current driven by the foreshock ions should peak on its initial side of a TD so that the enhanced field strength at the TD in turn increases this current by keeping more foreshock ions on their initial side. Which side the current peaks can be determined by whether the foreshock ions initially cross the TD and/or how their velocity is projected into the local perpendicular direction. Additionally, the foreshock ion‐driven currents from two sides could compete, and whether a compressional boundary forms is determined by the net current profile. Because such compressive structures in the foreshock can drive magneto sheath jets and cause many geoeffects, it is necessary to fully understand their formation. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  2. Abstract Hot flow anomalies are ion kinetic phenomena that play an important role in geoeffects and particle acceleration. They form due to the currents driven by demagnetized foreshock ions around a tangential discontinuity (TD). To understand the profile of such currents around a TD with foreshock ions on both sides, we use 2.5‐D local hybrid simulations of TDs, interacting with a planar shock with various shock geometries. We find that the electric field direction relative to the TD plane provides information about how the foreshock ion‐driven currents affect the magnetic field around the TD. For TDs embedded in the quasi‐parallel shock on both sides, the foreshock ions from one side of TD can cross it determining the current profile on the other side. In contrast, for TDs embedded in the quasi‐perpendicular shock, sheath‐leaked ions enter the TD and determine the current profile. We find that the foreshock ultra‐low frequency waves can periodically modulate how foreshock ions interact with the TD and thus the current profile. Studying the effects of various magnetic field configurations allows us to build a more comprehensive model of hot flow anomalie formation. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  3. Abstract The ion foreshock, filled with backstreaming foreshock ions, is very dynamic with many transient structures that disturb the bow shock and the magnetosphere‐ionosphere system. It has been shown that foreshock ions can be generated through either solar wind reflection at the bow shock or leakage from the magnetosheath. While solar wind reflection is widely believed to be the dominant generation process, our investigation using Time History of Events and Macroscale Interactions during Substorms mission observations reveals that the relative importance of magnetosheath leakage has been underestimated. We show from case studies that when the magnetosheath ions exhibit field‐aligned anisotropy, a large fraction of them attains sufficient field‐aligned speed to escape upstream, resulting in very high foreshock ion density. The observed foreshock ion density, velocity, phase space density, and distribution function shape are consistent with such an escape or leakage process. Our results suggest that magnetosheath leakage could be a significant contributor to the formation of the ion foreshock. Further characterization of the magnetosheath leakage process is a critical step toward building predictive models of the ion foreshock, a necessary step to better forecast foreshock‐driven space weather effects. 
    more » « less
  4. null (Ed.)
    Mesoscale (on the scales of a few minutes and a few R E ) magnetosheath and magnetopause perturbations driven by foreshock transients have been observed in the flank magnetotail. In this paper, we present the 3D global hybrid simulation results to show qualitatively the 3D structure of the flank magnetopause distortion caused by foreshock transients and its impacts on the tail magnetosphere and the ionosphere. Foreshock transient perturbations consist of a low-density core and high-density edge(s), thus, after they propagate into the magnetosheath, they result in magnetosheath pressure perturbations that distort magnetopause. The magnetopause is distorted locally outward (inward) in response to the dip (peak) of the magnetosheath pressure perturbations. As the magnetosheath perturbations propagate tailward, they continue to distort the flank magnetopause. This qualitative explains the transient appearance of the magnetosphere observed in the flank magnetosheath associated with foreshock transients. The 3D structure of the magnetosheath perturbations and the shape of the distorted magnetopause keep evolving as they propagate tailward. The transient distortion of the magnetopause generates compressional magnetic field perturbations within the magnetosphere. The magnetopause distortion also alters currents around the magnetopause, generating field-aligned currents (FACs) flowing in and out of the ionosphere. As the magnetopause distortion propagates tailward, it results in localized enhancements of FACs in the ionosphere that propagate anti-sunward. This qualitatively explains the observed anti-sunward propagation of the ground magnetic field perturbations associated with foreshock transients. 
    more » « less
  5. Abstract In the ion foreshock, hot flow anomalies (HFAs) and foreshock bubbles (FBs) are two types of foreshock transients that have the strongest fluctuations, which can disturb the magnetosphere‐ionosphere system and increase shock acceleration efficiency. They form due to interaction between the foreshock ions and solar wind discontinuities: the direction of the foreshock ion‐driven current and whether it decreases or increases the magnetic field strength behind the discontinuity determine whether the transient's formation can be promoted or suppressed. Thus, to predict the HFA and FB formation and forecast their space weather effects, it is necessary to predict the foreshock ion‐driven current direction. In this study, we derive analytical equations of foreshock ion velocities within discontinuities to estimate foreshock ion‐driven current direction, which provides a quantitative criterion of HFA and FB formation. To validate the criterion, we use Acceleration Reconnection Turbulence & Electrodynamics of Moon's Interaction with the Sun to observe pristine solar wind discontinuities and calculate discontinuity parameters. We use Magnetospheric Multiscale to observe the foreshock ion motion around the discontinuities and show that the data support our model. This study is another step toward a predictive model of HFA and FB formation so that we can forecast their space weather effects at Earth using solar wind observations at lunar orbit or L1. 
    more » « less
  6. Abstract When a solar wind discontinuity interacts with foreshock ions, foreshock transients such as hot flow anomalies and foreshock bubbles can form. These create significant dynamic pressure perturbations disturbing the bow shock, magnetopause, and magnetosphere‐ionosphere system. However, presently these phenomena are not predictable. In the accompanying paper, we derived analytical equations of foreshock ion partial gyration around a discontinuity and the resultant current density. In this study, we utilize the derived current density strength to model the energy conversion from the foreshock ions, which drives the outward motion or expansion of the solar wind plasma away from the discontinuity. We show that the model expansion speeds match those from local hybrid simulations for varying foreshock ion parameters. Using MMS, we conduct a statistical study showing that the model expansion speeds are moderately correlated with the magnetic field strength variations and the dynamic pressure decreases around discontinuities with correlation coefficients larger than 0.5. We use conjunctions between ARTEMIS and MMS to show that the model expansion speeds are typically large for those already‐formed foreshock transients. Our results show that our model can be reasonably successful in predicting significant dynamic pressure disturbances caused by foreshock ion‐discontinuity interactions. We discuss ways to improve the model in the future. 
    more » « less
  7. null (Ed.)