skip to main content


Search for: All records

Creators/Authors contains: "Liu, X."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 7, 2025
  2. Free, publicly-accessible full text available July 12, 2025
  3. submitted - in Review for IEEE ICASSP-2024) (Ed.)
    The Fearless Steps Apollo (FS-APOLLO) resource is a collection of over 150,000 hours of audio, associated meta-data, and supplemental technological toolkit intended to benefit the (i) speech processing technology, (ii) communication science, team-based psychology, and history, and (iii) education/STEM, preservation/archival communities. The FSAPOLLO initiative which started in 2014 has since resulted in the preservation of over 75,000 hours of NASA Apollo Missions audio. Systems created for this audio collection have led to the emergence of several new Speech and Language Technologies (SLT). This paper seeks to provide an overview of the latest advancements in the FS-Apollo effort and explore upcoming strategies in big-data deployment, outreach, and novel avenues of K-12 and STEM education facilitated through this resource. 
    more » « less
    Free, publicly-accessible full text available April 16, 2025
  4. Free, publicly-accessible full text available December 15, 2024
  5. The ability to observe astronomical events through the detection of gravitational waves relies on the quality of multilayer coatings used on the optical mirrors of interferometers. Amorphous Ta2O5 (including TiO2:Ta2O5) currently limits detector sensitivity due to high mechanical loss. In this paper, mechanical loss measured at both cryogenic and room temperatures of amorphous Ta2O5 films grown by magnetron sputtering and annealed in air at 500 ◦C is shown to decrease for elevated growth temperature. Films grown at 310 ◦C and annealed yield a mechanical loss of 3.1×10−4 at room temperature, the lowest value reported for pure amorphous Ta2O5 grown by magnetron sputtering to date, and comparable to the lowest values obtained for films grown by ion beam sputtering. Additionally, the refractive index n increases 6% for elevated growth temperature, which could lead to improved sensitivity of gravitational-wave detectors by allowing a thickness reduction in the mirrors’ coatings. Structural characterization suggests that the observed mechanical loss reduction in amorphous Ta2O5 films with increasing growth temperature correlates with a reduction in the coordination number between oxygen and tantalum atoms, consistent with TaOx polyhedra with increased corner-sharing and reduced edge- and facesharing structures. 
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  6. Free, publicly-accessible full text available October 8, 2024
  7. The effects of surfactants on a mechanically generated plunging breaker are studied experimentally in a laboratory wave tank. Waves are generated using a dispersively focused wave packet with a characteristic wavelength of$\lambda _0 = 1.18$m. Experiments are performed with two sets of surfactant solutions. In the first set, increasing amounts of the soluble surfactant Triton X-100 are mixed into the tank water, while in the second set filtered tap water is left undisturbed in the tank for wait times ranging from 15 min to 21 h. Increasing Triton X-100 concentrations and longer wait times lead to surfactant-induced changes in the dynamic properties of the free surface in the tank. It is found that low surface concentrations of surfactants can dramatically change the wave breaking process by changing the shape of the jet and breaking up the entrained air cavity at the time of jet impact. Direct numerical simulations (DNS) of plunging breakers with constant surface tension are used to show that there is significant compression of the free surface near the plunging jet tip and dilatation elsewhere. To explore the effect of this compression/dilatation, the surface tension isotherm is measured in all experimental cases. The effects of surfactants on the plunging jet are shown to be primarily controlled by the surface tension gradient ($\Delta \mathcal {E}$) while the ambient surface tension of the undisturbed wave tank ($\sigma _0$) plays a secondary role.

     
    more » « less
    Free, publicly-accessible full text available October 10, 2024
  8. Free, publicly-accessible full text available October 23, 2024
  9. The sensitivity of gravitational-wave detectors is limited by the mechanical loss associated with the amorphous coatings of the detectors’ mirrors. Amorphous silicon has higher refraction index and lower mechanical loss than current high-index coatings, but its optical absorption at the wavelength used for the detectors is at present large. The addition of hydrogen to the amorphous silicon network reduces both optical absorption and mechanical loss for films prepared under a range of conditions at all measured wavelengths and temperatures, with a particularly large effect on films grown at room temperature. The uptake of hydrogen is greatest in the films grown at room temperature, but still below 1.5 at.% H, which show an ultralow optical absorption (below 10 ppm) measured at 2000 nm for 500-nm-thick films. These results show that hydrogenation is a promising strategy to reduce both optical absorption and mechanical loss in amorphous silicon, and may enable fabrication of mirror coatings for gravitational-wave detectors with improved sensitivity. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024