Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT A fascinating feature of land plants is their ability to continually initiate new tissues and organs throughout their lifespan, driven by a pool of pluripotent stem cells located in meristems. In seed plants, various types of meristems are initiated and maintained during the sporophyte generation, while their gametophytes lack meristems and rely on sporophyte tissues for growth. In contrast, seed‐free vascular plants, such as ferns, develop meristems during both the sporophyte and gametophyte generations, allowing for the independent growth of both generations. Recent findings have highlighted both conserved and lineage‐specific roles of the HAIRY MERISTEM (HAM) family of GRAS‐domain transcriptional regulators in various meristems throughout the land plant lifecycle. Here, we review and discuss howHAMgenes maintain meristem indeterminacy in both sporophytes and gametophytes, with a focus on studies performed in two model species: the flowering plantArabidopsis thalianaand the fernCeratopteris richardii. Additionally, we summarize the crucial and tightly regulated functions of the microRNA171 (miR171)‐HAM regulatory modules, which define HAM spatial patterns and activities during meristem development across various meristem identities in land plants.more » « lessFree, publicly-accessible full text available November 18, 2025
-
Most land plants alternate between generations of sexual gametophytes and asexual sporophytes. Unlike seed plants, fern gametophytes are free-living and grow independently of their sporophytes. In homosporous ferns like Ceratopteris, gametophytes derived from genetically identical spores exhibit sexual dimorphism, developing as either males or hermaphrodites. Males lack meristems and promote cell differentiation into sperm-producing antheridia. In contrast, hermaphrodites initiate multicellular meristems that stay undifferentiated, sustain cell division and prothallus expansion, and drive the formation of egg-producing archegonia. Once initiating the meristem, hermaphrodites secrete the pheromone antheridiogen, which triggers neighboring slower-growing gametophytes to develop as males, while the hermaphrodites themselves remain insensitive to antheridiogen. This strategy promotes outcrossing and prevents all individuals in the colony from becoming males. This study reveals that an evolutionarily conserved GRAS domain transcriptional regulator (CrHAM), directly repressed by Ceratopteris microRNA171 (CrmiR171), promotes meristem development in Ceratopteris gametophytes and determines the male-to-hermaphrodite ratio in the colony. CrHAM preferentially accumulates within the meristems of hermaphrodites but is excluded from differentiated antheridia. CrHAM sustains meristem proliferation and cell division through conserved hormone pathways. In the meantime, CrHAM inhibits the antheridiogen-induced conversion of hermaphrodites to males by suppressing the male program expression and preventing meristem cells from differentiating into sperm-producing antheridia. This finding establishes a connection between meristem indeterminacy and sex determination in ferns, suggesting both conserved and diversified roles of meristem regulators in land plants.more » « lessFree, publicly-accessible full text available July 25, 2025
-
One of the most important questions in all multicellular organisms is how to define and maintain different cell fates during continuous cell division and proliferation. Plant meristems provide a unique research system to address this fundamental question because meristems dynamically maintain themselves and sustain organogenesis through balancing cell division and cell differentiation. Different from the gametophytes of seed plants that depend on their sporophytes and lack meristems, the gametophytes of seed-free ferns develop different types of meristems (including apical cell-based meristems and multicellular apical and marginal meristems) to promote independent growth and proliferation during the sexual gametophyte phase. Recent studies combining confocal time-lapse imaging and computational image analysis reveal the cellular basis of the initiation and proliferation of different types of meristems in fern gametophytes, providing new insights into the evolution of meristems in land plants. In this review, we summarize the recent progress in understanding the cell growth dynamics in fern gametophytes and discuss both conserved and diversified mechanisms underlying meristem cell proliferation in seed-free vascular plants.more » « less
-
Abstract Meristems in land plants share conserved functions but develop highly variable structures. Meristems in seed-free plants, including ferns, usually contain one or a few pyramid-/wedge-shaped apical cells (ACs) as initials, which are lacking in seed plants. It remained unclear how ACs promote cell proliferation in fern gametophytes and whether any persistent AC exists to sustain fern gametophyte development continuously. Here, we uncovered previously undefined ACs maintained even at late developmental stages in fern gametophytes. Through quantitative live-imaging, we determined division patterns and growth dynamics that maintain the persistent AC in Sphenomeris chinensis , a representative fern. The AC and its immediate progenies form a conserved cell packet, driving cell proliferation and prothallus expansion. At the apical centre of gametophytes, the AC and its adjacent progenies display small dimensions resulting from active cell division instead of reduced cell expansion. These findings provide insight into diversified meristem development in land plants.more » « less