skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Liu, Yang P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We give the first almost-linear total time algorithm for deciding if a flow of cost at most $F$ still exists in a directed graph, with edge costs and capacities, undergoing decremental updates, i.e., edge deletions, capacity decreases, and cost increases. This implies almost-linear time algorithms for approximating the minimum-cost flow value and s-t distance on such decremental graphs. Our framework additionally allows us to maintain decremental strongly connected components in almost-linear time deterministically. These algorithms also improve over the current best known runtimes for statically computing minimum-cost flow, in both the randomized and deterministic settings. We obtain our algorithms by taking the dual perspective, which yields cut-based algorithms. More precisely, our algorithm computes the flow via a sequence of $m^{1+o(1)}$-dynamic min-ratio cut problems, the dual analog of the dynamic min-ratio cycle problem that underlies recent fast algorithms for minimum-cost flow. Our main technical contribution is a new data structure that returns an approximately optimal min-ratio cut in amortized $m^{o(1)}$ time by maintaining a tree-cut sparsifier. This is achieved by devising a new algorithm to maintain the dynamic expander hierarchy of [Goranci-Racke-Saranurak-Tan, SODA 2021] that also works in capacitated graphs. All our algorithms are deterministic, though they can be sped up further using randomized techniques while still working against an adaptive adversary. 
    more » « less
    Free, publicly-accessible full text available October 27, 2025
  2. Free, publicly-accessible full text available June 10, 2025
  3. Free, publicly-accessible full text available June 10, 2025
  4. Kumar, Amit ; Ron-Zewi, Noga (Ed.)
    We study parallel repetition of k-player games where the constraints satisfy the projection property. We prove exponential decay in the value of a parallel repetition of projection games with a value less than 1. 
    more » « less