- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
01000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Fan, Yuang (1)
-
Hu, Lanxiang (1)
-
Jiang, Xiaofan (1)
-
Liu, Yian (1)
-
Nie, Jingping (1)
-
Preindl, Matthias (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The fast development of electric vehicles (EV) and EV chargers introduces many factors that affect the grid. EV charging and charge scheduling also bring challenges to EV drivers and grid operators. In this work, we propose a human-centric, data-driven, city-scale, multivariate optimization approach for the EV-interfaced grid. This approach takes into account user historical driving and charging habits, user preferences, EV characteristics, city-scale mobility, EV charger availability and price, and grid capacity. The user preferences include the trade-off between cost and time to charge, as well as incentives to participate in different energy-saving programs. We leverage deep reinforcement learning (DRL) to make recommendations to EV drivers and optimize their welfare while enhancing grid performance.more » « less