skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Liu, Yong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 30, 2025
  2. Free, publicly-accessible full text available December 6, 2024
  3. Multi-principal element alloys (MPEAs) with remarkable performances possess great potential as structural, functional, and smart materials. However, their efficient performance-orientated design in a wide range of compositions and types is an extremely challenging issue, because of properties strongly dependent upon the composition and composition-dominated microstructure. Here, we propose a multistage-design approach integrating machine learning, physical laws and a mathematical model for developing the desired-property MPEAs in a very time-efficient way. Compared to the existing physical model- or machine-learning-assisted material development, the forward-and-inverse problems, including identifying the target property and unearthing the optimal composition, can be tackled with better efficiency and higher accuracy using our proposed avenue, which defeats the one-step component-performance design strategy by multistage-design coupling constraints. Furthermore, we developed a new multi-phase MPEA at the minimal time and cost, whose high strength-ductility synergy exceeded those of its system and subsystem reported so far by searching for the optimal combination of phase fraction and composition. The present work suggests that the property-guided composition and microstructure are precisely tailored through the newly built approach with significant reductions of the development period and cost, which is readily extendable to other multi-principal element materials. 
    more » « less