Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Existing safety control methods for non-stochastic systems become undefined when the system operates outside the maximal robust controlled invariant set (RCIS), making those methods vulnerable to unexpected initial states or unmodeled disturbances. In this work, we propose a novel safety control framework that can work both inside and outside the maximal RCIS, by identifying a worst-case disturbance that can be handled at each state and constructing the control inputs robust to that worst-case disturbance model. We show that such disturbance models and control inputs can be jointly computed by considering an invariance problem for an auxiliary system. Finally, we demonstrate the efficacy of our method both in simulation and in a drone experiment.more » « less
-
Inspired by the work of Tsiamis et al. [1], in this paper we study the statistical hardness of learning to stabilize linear time-invariant systems. Hardness is measured by the number of samples required to achieve a learning task with a given probability. The work in [1] shows that there exist system classes that are hard to learn to stabilize with the core reason being the hardness of identification. Here we present a class of systems that can be easy to identify, thanks to a non-degenerate noise process that excites all modes, but the sample complexity of stabilization still increases exponentially with the system dimension. We tie this result to the hardness of co-stabilizability for this class of systems using ideas from robust control.more » « less
-
Koopman liftings have been successfully used to learn high dimensional linear approximations for autonomous systems for prediction purposes, or for control systems for leveraging linear control techniques to control nonlinear dynamics. In this paper, we show how learned Koopman approximations can be used for state-feedback correct-by-construction control. To this end, we introduce the Koopman over-approximation, a (possibly hybrid) lifted representation that has a simulation-like relation with the underlying dynamics. Then, we prove how successive application of controlled predecessor operation in the lifted space leads to an implicit backward reachable set for the actual dynamics. Finally, we demonstrate the approach on two nonlinear control examples with unknown dynamics.more » « less
-
We revisit the problem of computing (robust) controlled invariant sets for discrete-time linear systems. Departing from previous approaches, we consider implicit, rather than explicit, representations for controlled invariant sets. Moreover, by considering such representations in the space of states and finite input sequences we obtain closed-form expressions for controlled invariant sets. An immediate advantage is the ability to handle high-dimensional systems since the closed-form expression is computed in a single step rather than iteratively. To validate the proposed method, we present thorough case studies illustrating that in safety-critical scenarios the implicit representation suffices in place of the explicit invariant set. The proposed method is complete in the absence of disturbances, and we provide a weak completeness result when disturbances are present.more » « less
-
AutoRegressive eXogenous (ARX) models form one of the most important model classes in control theory, econometrics, and statistics, but they are yet to be understood in terms of their finite sample identification analysis. The technical challenges come from the strong statistical dependency not only between data samples at different time instances but also between elements within each individual sample. In this work, for ARX models with potentially unknown orders, we study how ordinary least squares (OLS) estimator performs in terms of identifying model parameters from data collected from either a single length-T trajectory or N i.i.d. trajectories. Our main results show that as long as the orders of the model are chosen optimistically, i.e., we are learning an over-parameterized model compared to the ground truth ARX, the OLS will converge with the optimal rate O(1/√T) (or O(1/√N)) to the true (low-order) ARX parameters. This occurs without the aid of any regularization, thus is referred to as self-regularization. Our results imply that the oracle knowledge of the true orders and usage of regularizers are not necessary in learning ARX models — over-parameterization is all you needmore » « less
-
AutoRegressive eXogenous (ARX) models form one of the most important model classes in control theory, econometrics, and statistics, but they are yet to be understood in terms of their finite sample identification analysis. The technical challenges come from the strong statistical dependency not only between data samples at different time instances but also between elements within each individual sample. In this work, for ARX models with potentially unknown orders, we study how ordinary least squares (OLS) estimator performs in terms of identifying model parameters from data collected from either a single length-T trajectory or N i.i.d. trajectories. Our main results show that as long as the orders of the model are chosen optimistically, i.e., we are learning an over-parameterized model compared to the ground truth ARX, the OLS will converge with the optimal rate O(1/√T) (or O(1/√N)) to the true (low-order) ARX parameters. This occurs without the aid of any regularization, thus is referred to as self-regularization. Our results imply that the oracle knowledge of the true orders and usage of regularizers are not necessary in learning ARX models — over-parameterization is all you need.more » « less
-
In this paper, we derive closed-form expressions for implicit controlled invariant sets for discrete-time controllable linear systems with measurable disturbances. In particular, a disturbance-reactive (or disturbance feedback) controller in the form of a parameterized finite automaton is considered. We show that, for a class of automata, the robust positively invariant sets of the corresponding closed-loop systems can be expressed by a set of linear inequality constraints in the joint space of system states and controller parameters. This leads to an implicit representation of the invariant set in a lifted space. We further show how the same parameterization can be used to compute invariant sets when the disturbance is not available for measurement.more » « less
-
Incorporating predictions of external inputs, which can otherwise be treated as disturbances, has been widely studied in control and computer science communities. These predictions are commonly referred to as preview in optimal control and lookahead in temporal logic synthesis. However, little work has been done for analyzing the value of preview information for safety control for systems with continuous state spaces. In this work, we start from showing general properties for discrete-time nonlinear systems with preview and strategies on how to determine a good preview time, and then we study a special class of linear systems, called systems in Brunovsky canonical form, and show special properties for this class of systems. In the end, we provide two numerical examples to further illustrate the value of preview in safety control.more » « less