Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 25, 2025
-
Free, publicly-accessible full text available May 1, 2025
-
Abstract Chemical energy ferroelectrics are generally solid macromolecules showing spontaneous polarization and chemical bonding energy. These materials still suffer drawbacks, including the limited control of energy release rate, and thermal decomposition energy well below total chemical energy. To overcome these drawbacks, we report the integrated molecular ferroelectric and energetic material from machine learning-directed additive manufacturing coupled with the ice-templating assembly. The resultant aligned porous architecture shows a low density of 0.35 g cm−3, polarization-controlled energy release, and an anisotropic thermal conductivity ratio of 15. Thermal analysis suggests that the chlorine radicals react with macromolecules enabling a large exothermic enthalpy of reaction (6180 kJ kg−1). In addition, the estimated detonation velocity of molecular ferroelectrics can be tuned from 6.69 ± 0.21 to 7.79 ± 0.25 km s−1by switching the polarization state. These results provide a pathway toward spatially programmed energetic ferroelectrics for controlled energy release rates.more » « less
-
null (Ed.)Abstract The origins of an observed weakly sheared nonturbulent (laminar) layer (WSL), and a strongly sheared turbulent layer above the Equatorial Undercurrent core (UCL) in the eastern equatorial Pacific are studied, based mainly on the data from the Tropical Atmosphere and Ocean mooring array. Multiple-time-scale (from 3 to 25 days) equatorial waves were manifested primarily as zonal velocity oscillations with the maximum amplitudes (from 10 to 30 cm s −1 ) occurring at different depths (from the surface to 85-m depths) above the seasonal thermocline. The subsurface-intensified waves led to vertically out-of-phase shear variations in the upper thermocline via destructive interference with the seasonal zonal flow, opposing the tendency for shear instability. These waves were also associated with depth-dependent, multiple-vertical-scale stratification variations, with phase lags of π /2 or π , further altering stability of the zonal current system to vertical shear. The WSL and UCL were consequently formed by coupling of multiple equatorial waves with differing phases, particularly of the previously identified equatorial mode and subsurface mode tropical instability waves (with central period of 17 and 20 days, respectively, in this study), and subsurface-intensified waves with central periods of 6, 5, and 12 days and velocity maxima at 45-, 87-, and 40-m depths, respectively. In addition, a wave-like feature with periods of 50–90 days enhanced the shear throughout the entire UCL. WSLs and UCLs seem to emerge without a preference for particular tropical instability wave phases. The generation mechanisms of the equatorial waves and their joint impacts on thermocline mixing remain to be elucidated.more » « less
-
Abstract The flux Richardson numberRf, also called the mixing efficiency of stratified turbulence, is important in determining geophysical flow phenomena such as ocean circulation and air‐sea transports. MeasuringRfin the field is usually difficult, thus parameterization ofRfbased on readily observed properties is essential. Here, estimates ofRfin a strongly turbulent, sediment‐stratified estuarine flow are obtained from measurements of covariance‐derived turbulent buoyancy fluxes (B) and spectrally fitted values of the dissipation rate of turbulent kinetic energy (ε). We test scalings forRfin terms of the buoyancy Reynolds number (Reb), the gradient Richardson number (Ri), and turbulent Froude number (Frt). Neither theReb‐based nor theRi‐based scheme is able to describe the observed variations inRf, but theFrt‐based parameterization works well. These findings support further use of theFrt‐ based parameterization in turbulent oceanic and estuarine environments.more » « less