skip to main content

Search for: All records

Creators/Authors contains: "Lloyd, Wes"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Function-as-a-Service or FaaS is a popular delivery model of serverless computing where developers upload code to be executed in the cloud as short running stateless functions. Using smaller functions to decompose processing of larger tasks or workflows introduces the question of how to instrument application control flow to orchestrate an overall task or workflow. In this paper, we examine implications of using different methods to orchestrate the control flow of a serverless data processing pipeline composed as a set of independent FaaS functions. We performed experiments on the AWS Lambda FaaS platform and compared how four different patterns of control flow impact the cost and performance of the pipeline. We investigate control flow using client orchestration, microservice controllers, event-based triggers, and state-machines. Overall, we found that asynchronous methods led to lower orchestration costs, and that event-based orchestration incurred a performance penalty.
  2. Current serverless Function-as-a-Service (FaaS) platforms generally use simple, classic scheduling algorithms for distributing function invocations while ignoring FaaS characteristics such as rapid changes in resource utilization and the freeze-thaw life cycle. In this paper, we present FaaSRank, a function scheduler for serverless FaaS platforms based on information monitored from servers and functions. FaaSRank automatically learns scheduling policies through experience using reinforcement learning (RL) and neural networks supported by our novel Score-Rank-Select architecture. We implemented FaaSRank in Apache OpenWhisk, an open source FaaS platform, and evaluated performance against other baseline schedulers including OpenWhisk's default scheduler on two 13-node OpenWhisk clusters. For training and evaluation, we adapted real-world serverless workload traces provided by Microsoft Azure. For the duration of test workloads, FaaSRank sustained on average a lower number of inflight invocations 59.62 % and 70.43 % as measured on two clusters respectively. We also demonstrate the generalizability of FaaSRank for any workload. When trained using a composite of 50 episodes each for 10 distinct random workloads, FaaSRank reduced average function completion time by 23.05% compared to OpenWhisk's default scheduler.
  3. To improve the observability of workload performance, resource utilization, and infrastructure underlying serverless Function-as-a-Service (FaaS) platforms, we have developed the Serverless Application Analytics Framework (SAAF). SAAF provides a reusable framework supporting multiple programming languages that developers can leverage to inspect performance, resource utilization, scalability, and infrastructure metrics of function deployments to commercial and open-source FaaS platforms. To automate reproducible FaaS performance experiments, we provide the FaaS Runner as a multithreaded FaaS client. FaaS Runner provides a programmable client that can orchestrate over one thousand concurrent FaaS function calls. The ReportGenerator is then used to aggregate experiment output into CSV files for consumption by popular data analytics tools. SAAF and its supporting tools combined can assess forty-eight distinct metrics to enhance observability of serverless software deployments. In this tutorial paper, we describe SAAF and its supporting tools and provide examples of observability insights that can be derived.