Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract For gamma-ray bursts (GRBs) with durations greater than two seconds (so-called long GRBs), the intrinsic prompt gamma-ray emission appears, on average, to last longer for bursts at lower redshifts. We explore the nature of this duration–redshift anticorrelation, describing systems and conditions in which this cosmological evolution could arise. In particular, we explore its dependence on the metallicity of a massive star progenitor, because we can securely count on the average stellar metallicity to increase with decreasing redshift. Although stars with higher metallicity/lower redshift lose mass and angular momentum through line-driven winds, in some cases these stars are able to form more extended accretion disks when they collapse, potentially leading to longer-duration GRBs. We also examine how this duration–redshift trend may show up in interacting binary models composed of a massive star and compact object companion, recently suggested to be the progenitors of radio-bright GRBs. Under certain conditions, mass loss and equation-of-state effects from massive stars with higher metallicity and lower redshift can decrease the binary separation. This can then lead to spin-up of the massive star and allow for a longer-duration GRB upon the massive star’s collapse. Finally, the duration–redshift trend may also be supported by a relatively larger population of small-separation binaries born in situ at low redshift.more » « less
-
Abstract The combined detection of a gravitational-wave signal, kilonova, and short gamma-ray burst (sGRB) from GW170817 marked a scientific breakthrough in the field of multimessenger astronomy. But even before GW170817, there have been a number of sGRBs with possible associated kilonova detections. In this work, we re-examine these ‘historical’ sGRB afterglows with a combination of state-of-the-art afterglow and kilonova models. This allows us to include optical/near-infrared synchrotron emission produced by the sGRB as well as ultraviolet/optical/near-infrared emission powered by the radioactive decay of r-process elements (i.e. the kilonova). Fitting the light curves, we derive the velocity and the mass distribution as well as the composition of the ejected material. The posteriors on kilonova parameters obtained from the fit were turned into distributions for the peak magnitude of the kilonova emission in different bands and the time at which this peak occurs. From the sGRB with an associated kilonova, we found that the peak magnitude in H bands falls in the range [−16.2, −13.1] ($$95{{\ \rm per\ cent}}$$ of confidence) and occurs within $$0.8\!-\!3.6\, \rm d$$ after the sGRB prompt emission. In g band instead we obtain a peak magnitude in range [−16.8, −12.3] occurring within the first 18 h after the sGRB prompt. From the luminosity distributions of GW170817/AT2017gfo, kilonova candidates GRB130603B, GRB050709, and GRB060614 (with the possible inclusion of GRB150101B, GRB050724A, GRB061201, GRB080905A, GRB150424A, and GRB160821B) and the upper limits from all the other sGRBs not associated with any kilonova detection we obtain for the first time a kilonova luminosity distribution in different bands.more » « less
-
Abstract The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe.more » « less
An official website of the United States government
