skip to main content

Search for: All records

Creators/Authors contains: "Lobanov, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2023
  2. Free, publicly-accessible full text available January 1, 2023
  3. A bstract A search is presented for new particles produced at the LHC in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb − 1 , collected in 2017–2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with anmore »earlier search based on a data sample of 36 fb − 1 , collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.« less
    Free, publicly-accessible full text available November 1, 2022
  4. Context. Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data corruption effects can be calibrated. These studies are the most important when proposing observations of new sources, in the characterization of the capabilities of new or upgraded instruments, and when verifying model-based theoretical predictions in a direct comparison with observational data. Aims. We present the SYnthetic Measurement creator for long Baseline Arrays ( SYMBA ), a novel synthetic data generation pipeline formore »Very Long Baseline Interferometry (VLBI) observations. SYMBA takes into account several realistic atmospheric, instrumental, and calibration effects. Methods. We used SYMBA to create synthetic observations for the Event Horizon Telescope (EHT), a millimetre VLBI array, which has recently captured the first image of a black hole shadow. After testing SYMBA with simple source and corruption models, we study the importance of including all corruption and calibration effects, compared to the addition of thermal noise only. Using synthetic data based on two example general relativistic magnetohydrodynamics (GRMHD) model images of M 87, we performed case studies to assess the image quality that can be obtained with the current and future EHT array for different weather conditions. Results. Our synthetic observations show that the effects of atmospheric and instrumental corruptions on the measured visibilities are significant. Despite these effects, we demonstrate how the overall structure of our GRMHD source models can be recovered robustly with the EHT2017 array after performing calibration steps, which include fringe fitting, a priori amplitude and network calibration, and self-calibration. With the planned addition of new stations to the EHT array in the coming years, images could be reconstructed with higher angular resolution and dynamic range. In our case study, these improvements allowed for a distinction between a thermal and a non-thermal GRMHD model based on salient features in reconstructed images.« less
  5. Free, publicly-accessible full text available September 1, 2022
  6. Free, publicly-accessible full text available September 1, 2022
  7. Free, publicly-accessible full text available August 1, 2022
  8. Free, publicly-accessible full text available August 1, 2022
  9. Abstract Production cross sections of the Higgs boson are measured in the $${\mathrm{H}} \rightarrow {\mathrm{Z}} {\mathrm{Z}} \rightarrow 4\ell $$ H → Z Z → 4 ℓ ( $$\ell ={\mathrm{e}},{{{\upmu }}_{\mathrm{}}^{\mathrm{}}} $$ ℓ = e , μ ) decay channel. A data sample of proton–proton collisions at a center-of-mass energy of 13 $$\,\text {Te}\text {V}$$ Te , collected by the CMS detector at the LHC and corresponding to an integrated luminosity of 137 $$\,\text {fb}^{-1}$$ fb - 1 is used. The signal strength modifier $$\mu $$ μ , defined as the ratio of the Higgs boson production rate in the $$4\ellmore »$$ 4 ℓ channel to the standard model (SM) expectation, is measured to be $$\mu =0.94 \pm 0.07 \,\text {(stat)} ^{+0.09}_{-0.08} \,\text {(syst)} $$ μ = 0.94 ± 0.07 (stat) - 0.08 + 0.09 (syst) at a fixed value of $$m_{{\mathrm{H}}} = 125.38\,\text {Ge}\text {V} $$ m H = 125.38 Ge . The signal strength modifiers for the individual Higgs boson production modes are also reported. The inclusive fiducial cross section for the $${\mathrm{H}} \rightarrow 4\ell $$ H → 4 ℓ process is measured to be $$2.84^{+0.23}_{-0.22} \,\text {(stat)} ^{+0.26}_{-0.21} \,\text {(syst)} \,\text {fb} $$ 2 . 84 - 0.22 + 0.23 (stat) - 0.21 + 0.26 (syst) fb , which is compatible with the SM prediction of $$2.84 \pm 0.15 \,\text {fb} $$ 2.84 ± 0.15 fb for the same fiducial region. Differential cross sections as a function of the transverse momentum and rapidity of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet are measured. A new set of cross section measurements in mutually exclusive categories targeted to identify production mechanisms and kinematical features of the events is presented. The results are in agreement with the SM predictions.« less
    Free, publicly-accessible full text available June 1, 2022