skip to main content

Search for: All records

Creators/Authors contains: "Lochan Basnet, Ranji Ranjithan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Water distribution systems (WDSs) face a significant challenge in the form of pipe leaks. Pipe leaks can cause loss of a large amount of treated water, leading to pressure loss, increased energy costs, and contamination risks. Locating pipe leaks has been a constant challenge for water utilities and stakeholders due to the underground location of the pipes. Physical methods to detect leaks are expensive, intrusive, and heavily localized. Computational approaches provide an economical alternative to physical methods. Data-driven machine learning-based computational approaches have garnered growing interest in recent years to address the challenge of detecting pipe leaks in WDSs. While several studies have applied machine learning models for leak detection on single pipes and small test networks, their applicability to the real-world WDSs is unclear. Most of these studies simplify the leak characteristics and ignore modeling and measuring device uncertainties, which makes the scalability of their approaches questionable to real-world WDSs. Our study addresses this issue by devising four study cases that account for the realistic leak characteristics (multiple, multi-size, and randomly located leaks) and incorporating noise in the input data to account for the model- and measuring device- related uncertainties. A machine learning-based approach that uses simulated pressure asmore »input to predict both location and size of leaks is proposed. Two different machine learning models: Multilayer Perceptron (MLP) and Convolutional Neural Network (CNN), are trained and tested for the four study cases, and their performances are compared. The precision and recall results for the L-Town network indicate good accuracies for both the models for all study cases, with CNN generally outperforming MLP.« less