skip to main content

Search for: All records

Creators/Authors contains: "Lodge, Timothy P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 9, 2025
  2. Free, publicly-accessible full text available March 13, 2025
  3. Temperature-dependent X-ray photon correlation spectroscopy (XPCS) measurements are reported for a binary diblock copolymer blend that self-assembles into an aperiodic dodecagonal quasicrystal (DDQC) and a periodic Frank-Kasper σ phase approximant. The measured structural relaxation times are Bragg scattering wavevector-independent and are five times faster in the DDQC than the σ phase, with minimal temperature dependence. The underlying dynamical relaxations are ascribed to differences in particle motion at the grain boundaries within each of these tetrahedrally close-packed assemblies. These results identify unprecedented particle dynamics measurements of tetrahedrally-coordinated micellar block polymers, thus expanding the application of XPCS to ordered soft materials. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  4. Free, publicly-accessible full text available February 1, 2025
  5. This work focuses on the synthesis of titanium nitride–carbon (TiN–carbon) composites by the thermal decomposition of a titanyl phthalocyanine (TiN(TD)) precursor into TiN. The synthesis of TiN was also performed using the sol-gel method (TiN(SG)) of an alkoxide/urea. The structure and morphology of the TiN–carbon and its precursors were characterized by XRD, FTIR, SEM, TEM, EDS, and XPS. The FTIR results confirmed the presence of the titanium phthalocyanine (TiOPC) complex, while the XRD data corroborated the decomposition of TiOPC into TiN. The resultant TiN exhibited a cubic structure with the FM3-M lattice, aligning with the crystal system of the synthesized TiN via the alkoxide route. The XPS results indicated that the particles synthesized from the thermal decomposition of TiOPC resulted in the formation of TiN–carbon composites. The TiN particles were present as clusters of small spherical particles within the carbon matrix, displaying a porous sponge-like morphology. The proposed thermal decomposition method resulted in the formation of metal nitride composites with high carbon content, which were used as anodes for Li-ion half cells. The TiN–carbon composite anode showed a good specific capacity after 100 cycles at a current density of 100 mAg−1.

    more » « less
    Free, publicly-accessible full text available April 1, 2025
  6. Free, publicly-accessible full text available February 12, 2025
  7. Free, publicly-accessible full text available August 22, 2024
  8. Three families of ternary blends composed of poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMAn)/polystyrene (PS)/POEGMAn–PS were prepared to study the effect of side chain length on brush swelling and phase behavior.

    more » « less