Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract IntroductionMechanical forces provide critical biological signals to cells. Within the distal lung, tensile forces act across the basement membrane and epithelial cells atop. Stretching devices have supported studies of mechanical forces in distal lung epithelium to gain mechanistic insights into pulmonary diseases. However, the integration of curvature into devices applying mechanical forces onto lung epithelial cell monolayers has remained challenging. To address this, we developed a hammock-shaped platform that offers desired curvature and mechanical forces to lung epithelial monolayers. MethodsWe developed hammocks using polyethylene terephthalate (PET)-based membranes and magnetic-particle modified silicone elastomer films within a 48-well plate that mimic the alveolar curvature and tensile forces during breathing. These hammocks were engineered and characterized for mechanical and cell-adhesive properties to facilitate cell culture. Using human small airway epithelial cells (SAECs), we measured monolayer formation and mechanosensing using F-Actin staining and immunofluorescence for cytokeratin to visualize intermediate filaments. ResultsWe demonstrate a multi-functional design that facilitates a range of curvatures along with the incorporation of magnetic elements for dynamic actuation to induce mechanical forces. Using this system, we then showed that SAECs remain viable, proliferate, and form an epithelial cell monolayer across the entire hammock. By further applying mechanical stimulation via magnetic actuation, we observed an increase in proliferation and strengthening of the cytoskeleton, suggesting an increase in mechanosensing. ConclusionThis hammock strategy provides an easily accessible and tunable cell culture platform for mimicking distal lung mechanical forces in vitro. We anticipate the promise of this culture platform for mechanistic studies, multi-modal stimulation, and drug or small molecule testing, extendable to other cell types and organ systems.more » « less
-
Mechanical forces provide critical biological signals to cells during healthy and aberrant organ development as well as during disease processes in adults. Within the cardiopulmonary system, mechanical forces, such as shear, compressive, and tensile forces, act across various length scales, and dysregulated forces are often a leading cause of disease initiation and progression such as in bronchopulmonary dysplasia and cardiomyopathies. Engineered in vitro models have supported studies of mechanical forces in a number of tissue and disease-specific contexts, thus enabling new mechanistic insights into cardiopulmonary development and disease. This review first provides fundamental examples where mechanical forces operate at multiple length scales to ensure precise lung and heart function. Next, we survey recent engineering platforms and tools that have provided new means to probe and modulate mechanical forces across in vitro and in vivo settings. Finally, the potential for interdisciplinary collaborations to inform novel therapeutic approaches for a number of cardiopulmonary diseases are discussed.more » « less
-
Multiple myeloma (MM), a hematologic malignancy that preferentially colonizes the bone marrow, remains incurable with a survival rate of 3 to 6 mo for those with advanced disease despite great efforts to develop effective therapies. Thus, there is an urgent clinical need for innovative and more effective MM therapeutics. Insights suggest that endothelial cells within the bone marrow microenvironment play a critical role. Specifically, cyclophilin A (CyPA), a homing factor secreted by bone marrow endothelial cells (BMECs), is critical to MM homing, progression, survival, and chemotherapeutic resistance. Thus, inhibition of CyPA provides a potential strategy to simultaneously inhibit MM progression and sensitize MM to chemotherapeutics, improving therapeutic response. However, inhibiting factors from the bone marrow endothelium remains challenging due to delivery barriers. Here, we utilize both RNA interference (RNAi) and lipid–polymer nanoparticles to engineer a potential MM therapy, which targets CyPA within blood vessels of the bone marrow. We used combinatorial chemistry and high-throughput in vivo screening methods to engineer a nanoparticle platform for small interfering RNA (siRNA) delivery to bone marrow endothelium. We demonstrate that our strategy inhibits CyPA in BMECs, preventing MM cell extravasation in vitro. Finally, we show that siRNA-based silencing of CyPA in a murine xenograft model of MM, either alone or in combination with the Food and Drug Administration (FDA)-approved MM therapeutic bortezomib, reduces tumor burden and extends survival. This nanoparticle platform may provide a broadly enabling technology to deliver nucleic acid therapeutics to other malignancies that home to bone marrow.more » « less
-
Abstract Hydrogels are engineered with biochemical and biophysical signals to recreate aspects of the native microenvironment and to control cellular functions such as differentiation and matrix deposition. This deposited matrix accumulates within the pericellular space and likely affects the interactions between encapsulated cells and the engineered hydrogel; however, there has been little work to study the spatiotemporal evolution of matrix at this interface. To address this, metabolic labeling is employed to visualize the temporal and spatial positioning of nascent proteins and proteoglycans deposited by chondrocytes. Within covalently crosslinked hyaluronic acid hydrogels, chondrocytes deposit nascent proteins and proteoglycans in the pericellular space within 1 d after encapsulation. The accumulation of this matrix, as measured by an increase in matrix thickness during culture, depends on the initial hydrogel crosslink density with decreased thicknesses for more crosslinked hydrogels. Encapsulated fluorescent beads are used to monitor the hydrogel location and indicate that the emerging nascent matrix physically displaces the hydrogel from the cell membrane with extended culture. These findings suggest that secreted matrix increasingly masks the presentation of engineered hydrogel cues and may have implications for the design of hydrogels in tissue engineering and regenerative medicine.more » « less