skip to main content

Search for: All records

Creators/Authors contains: "Logan E. Hillberry, Matthew T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cellular automata are interacting classical bits that display diverse behaviors, from fractals to random-number generators to Turing-complete computation. We introduce entangled quantum cellular automata subject to Goldilocks rules, tradeoffs of the kind underpinning biological, social, and economic complexity. Tweaking digital and analog quantum-computing protocols generates persistent entropy fluctuations; robust dynamical features, including an entangled breather; and network structure and dynamics consistent with complexity. Present-day quantum platforms---Rydberg arrays, trapped ions, and superconducting qubits---can implement Goldilocks protocols, which generate quantum many-body states with rich entanglement and structure. Moreover, the complexity studies reported here underscore an emerging idea in many-body quantum physics: some systems fall outside the integrable/chaotic dichotomy.