skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Long, Alan_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Serrations in the stress-time curve for a bulk metallic glass composite with microscale crystalline precipitates were measured with exceptionally high temporal resolution and low noise. Similar measurements were made for a more brittle metallic glass that did not contain crystallites but that was also tested in uniaxial compression. Despite significant differences in the structure and stress-strain behavior, the statistics of the serrations for both materials follow a simple mean-field model that describes plastic deformation as arising from avalanches of slipping weak spots. The presence of the crystalline precipitates reduces the number of large slips relative to the number of small slips as recorded in the stress-time data, consistent with the model predictions. The results agree with mean-field predictions for a smaller weakening parameter for the composite than for the monolithic metallic glass; the weakening parameter accounts for the underlying microstructural differences between the two. 
    more » « less