skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Long, Philip M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. The phenomenon of benign overfitting is one of the key mysteries uncovered by deep learning methodology: deep neural networks seem to predict well, even with a perfect fit to noisy training data. Motivated by this phenomenon, we consider when a perfect fit to training data in linear regression is compatible with accurate prediction. We give a characterization of linear regression problems for which the minimum norm interpolating prediction rule has near-optimal prediction accuracy. The characterization is in terms of two notions of the effective rank of the data covariance. It shows that overparameterization is essential for benign overfitting in this setting: the number of directions in parameter space that are unimportant for prediction must significantly exceed the sample size. By studying examples of data covariance properties that this characterization shows are required for benign overfitting, we find an important role for finite-dimensional data: the accuracy of the minimum norm interpolating prediction rule approaches the best possible accuracy for a much narrower range of properties of the data distribution when the data lie in an infinite-dimensional space vs. when the data lie in a finite-dimensional space with dimension that grows faster than the sample size.

    more » « less