Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract As microbiome research has progressed, it has become clear that most, if not all, eukaryotic organisms are hosts to microbiomes composed of prokaryotes, other eukaryotes, and viruses. Fungi have only recently been considered holobionts with their own microbiomes, as filamentous fungi have been found to harbor bacteria (including cyanobacteria), mycoviruses, other fungi, and whole algal cells within their hyphae. Constituents of this complex endohyphal microbiome have been interrogated using multi-omic approaches. However, a lack of tools, techniques, and standardization for integrative multi-omics for small-scale microbiomes (e.g., intracellular microbiomes) has limited progress towards investigating and understanding the total diversity of the endohyphal microbiome and its functional impacts on fungal hosts. Understanding microbiome impacts on fungal hosts will advance explorations of how “microbiomes within microbiomes” affect broader microbial community dynamics and ecological functions. Progress to date as well as ongoing challenges of performing integrative multi-omics on the endohyphal microbiome is discussed herein. Addressing the challenges associated with the sample extraction, sample preparation, multi-omic data generation, and multi-omic data analysis and integration will help advance current knowledge of the endohyphal microbiome and provide a road map for shrinking microbiome investigations to smaller scales.more » « less
-
Abstract Diverse members of early-diverging Mucoromycota, including mycorrhizal taxa and soil-associated Mortierellaceae, are known to harbor Mollicutes-related endobacteria (MRE). It has been hypothesized that MRE were acquired by a common ancestor and transmitted vertically. Alternatively, MRE endosymbionts could have invaded after the divergence of Mucoromycota lineages and subsequently spread to new hosts horizontally. To better understand the evolutionary history of MRE symbionts, we generated and analyzed four complete MRE genomes from two Mortierellaceae genera:Linnemannia(MRE-L) andBenniella(MRE-B). These genomes include the smallest known of fungal endosymbionts and showed signals of a tight relationship with hosts including a reduced functional capacity and genes transferred from fungal hosts to MRE. Phylogenetic reconstruction including nine MRE from mycorrhizal fungi revealed that MRE-B genomes are more closely related to MRE from Glomeromycotina than MRE-L from the same host family. We posit that reductions in genome size, GC content, pseudogene content, and repeat content in MRE-L may reflect a longer-term relationship with their fungal hosts. These data indicateLinnemanniaandBenniellaMRE were likely acquired independently after their fungal hosts diverged from a common ancestor. This work expands upon foundational knowledge on minimal genomes and provides insights into the evolution of bacterial endosymbionts.more » « less
-
null (Ed.)High-throughput amplicon sequencing that primarily targets the 16S ribosomal DNA (rDNA) (for bacteria and archaea) and the Internal Transcribed Spacer rDNA (for fungi) have facilitated microbial community discovery across diverse environments. A three-step PCR that utilizes flexible primer choices to construct the library for Illumina amplicon sequencing has been applied to several studies in forest and agricultural systems. The three-step PCR protocol, while producing high-quality reads, often yields a large number (up to 46%) of reads that are unable to be assigned to a specific sample according to its barcode. Here, we improve this technique through an optimized two-step PCR protocol. We tested and compared the improved two-step PCR meta-barcoding protocol against the three-step PCR protocol using four different primer pairs (fungal ITS: ITS1F-ITS2 and ITS1F-ITS4, and bacterial 16S: 515F-806R and 341F-806R). We demonstrate that the sequence quantity and recovery rate were significantly improved with the two-step PCR approach (fourfold more read counts per sample; determined reads ≈90% per run) while retaining high read quality (Q30 > 80%). Given that synthetic barcodes are incorporated independently from any specific primers, this two-step PCR protocol can be broadly adapted to different genomic regions and organisms of scientific interest.more » « less
-
ABSTRACT Morel mushrooms (Morchella, Pezizales) are highly prized edible fungi. Approaches to cultivate morels indoors in pasteurized composted substrates have been successful for Morchella rufobrunnea. We used DNA amplicon sequencing of the Internal Transcribed Spacer (ITS) ribosomal DNA and 16S rRNA gene to follow bacterial and fungal communities in substrates during indoor morel cultivation. Our goal was to determine changes in microbial communities at key stages of morel cultivation, which included primordia development, fundament initiation, differentiation and maturation. Additionally, we compared microbial communities between trays that successfully fruited to those that produced conidia and primordia but aborted before ascocarp formation (non-fruiting). The prokaryotic community was dominated by Firmicutes belonging to Bacillus and Paenibacillus with a lower abundance of Flavobacteria. At earlier stages, the fungal community was dominated by Pezizomycetes including Morchella and other species, whereas, later in the cropping cycle Sordariomycetes dominated. Additionally, differences were observed between trays with successful fruiting, which were dominated by Gilmaniella; compared to trays that did not fruit, which were dominated by Cephalotrichum. Our findings inform understanding of microbial community dynamics during morel cultivation, and show that fungal genera, such as Gilmaniella, and prokaryotic genera, such as Bacillus, are abundant in substrates that support M. rufobrunnea fruiting.more » « less
-
Morels ( Morchella spp.) are iconic edible mushrooms with a long history of human consumption. Some microbial taxa are hypothesized to be important in triggering the formation of morel primordia and development of fruiting bodies, thus, there is interest in the microbial ecology of these fungi. To identify and compare fungal and prokaryotic communities in soils where Morchella sextelata is cultivated in outdoor greenhouses, ITS and 16S rDNA high throughput amplicon sequencing and microbiome analyses were performed. Pedobacter , Pseudomonas , Stenotrophomonas , and Flavobacterium were found to comprise the core microbiome of M. sextelata ascocarps. These bacterial taxa were also abundant in the soil beneath growing fruiting bodies. A total of 29 bacterial taxa were found to be statistically associated to Morchella fruiting bodies. Bacterial community network analysis revealed high modularity with some 16S rDNA operational taxonomic unit clusters living in specialized fungal niches (e.g., pileus, stipe). Other fungi dominating the soil mycobiome beneath morels included Morchella , Phialophora , and Mortierella . This research informs understanding of microbial indicators and potential facilitators of Morchella ecology and fruiting body production.more » « less