Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The accelerated evolution and spread of pathogens are threats to host species. Agrobacteria require an oncogenic Ti or Ri plasmid to transfer genes into plants and cause disease. We developed a strategy to characterize virulence plasmids and applied it to analyze hundreds of strains collected between 1927 and 2017, on six continents and from more than 50 host species. In consideration of prior evidence for prolific recombination, it was surprising that oncogenic plasmids are descended from a few conserved lineages. Characterization of a hierarchy of features that promote or constrain plasticity allowed inference of the evolutionary history across the plasmid lineages. We uncovered epidemiological patterns that highlight the importance of plasmid transmission in pathogen diversification as well as in long-term persistence and the global spread of disease.
-
Summary Bulk soil and rhizosphere are soil compartments selecting different microbial communities. However, it is unknown whether this selection also can change the genome content of specific bacterial taxa, splitting a population in distinct ecotypes. To answer this question we compared the genome sequences of 53 isolates obtained from sugarcane rhizosphere (28) and bulk soil (25). These isolates were previously classified in the
Pseudomonas koreensis subgroup of theP. fluorescens complex. Phylogenomics showed a trend of separation between bulk soil and rhizosphere isolates. Discriminant analysis of principal components (DAPC) identified differences in the accessory genome of rhizosphere and bulk soil sub‐populations. We found significant changes in gene frequencies distinguishing rhizosphere from bulk soil ecotypes, for example, enrichment of phosphatases and xylose utilization (xut ) genes, respectively. Phenotypic assays and deletion ofxutA gene indicated that accumulation ofxut genes in the bulk soil sub‐population provided a higher growth capacity in ad ‐xylose medium, supporting the corresponding genomic differences. Despite the clear differences distinguishing the two ecotypes, all 53 isolates were classified in a single 16S rRNA gene OTU. Collectively, our results revealed that the gene pool and ecological behavior of a bacterial population can be different for ecotypes living in neighbouring soil habitats.