- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 19, 2026
-
Aprile, E; Aalbers, J; Abe, K; Ahmed_Maouloud, S; Althueser, L; Andrieu, B; Angelino, E; Antón_Martin, D; Arneodo, F; Baudis, L; et al (, The European Physical Journal C)Abstract Radiogenic neutrons emitted by detector materials are one of the most challenging backgrounds for the direct search of dark matter in the form of weakly interacting massive particles (WIMPs). To mitigate this background, the XENONnT experiment is equipped with a novel gadolinium-doped water Cherenkov detector, which encloses the xenon dual-phase time projection chamber (TPC). The neutron veto (NV) can tag neutrons via their capture on gadolinium or hydrogen, which release$$\gamma $$ -rays that are subsequently detected as Cherenkov light. In this work, we present the first results of the XENONnT NV when operated with demineralized water only, before the insertion of gadolinium. Its efficiency for detecting neutrons is$$({82\pm 1}){\%}$$ , the highest neutron detection efficiency achieved in a water Cherenkov detector. This enables a high efficiency of$$({53\pm 3}){\%}$$ for the tagging of WIMP-like neutron signals, inside a tagging time window of$${250}~{\upmu }\hbox {s}$$ between TPC and NV, leading to a livetime loss of$${1.6}{\%}$$ during the first science run of XENONnT.more » « lessFree, publicly-accessible full text available June 1, 2026
-
albers, J; Abe, K; Ahmed_Maouloud, S; Althueser, L; Andrieu, B; Angelino, E; Antn_Martin, D; Aprile, E; Arneodo, F; Baudis, L; et al (, Physical Review D)
An official website of the United States government

Full Text Available