skip to main content

Search for: All records

Creators/Authors contains: "Lopez, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report on the design, construction, and performance of a custom apparatus built to measure the frequency- and temperature-dependent absorptivity of millimeter-wave light by cosmic analog dusts. We highlight the unique challenges faced as well as a few key innovations that are part of the instrument. Among those is an ultra-compact Fourier transform spectrometer. We have measured its effective frequency range and FWHM resolution to be 150–2100 GHz and∼<#comment/>45GHz, respectively. Another innovation is a cold sample positioner whose temperature can be controlled within the range of 3.7–50 K. The use of a pulse-tube cryocooler results in a pulse-synchronous signal that dominates the detector (bolometer) signal. Methods used to address that challenge are also presented.

  2. Abstract Spin-valley locking in monolayer transition metal dichalcogenides has attracted enormous interest, since it offers potential for valleytronic and optoelectronic applications. Such an exotic electronic state has sparsely been seen in bulk materials. Here, we report spin-valley locking in a Dirac semimetal BaMnSb 2 . This is revealed by comprehensive studies using first principles calculations, tight-binding and effective model analyses, angle-resolved photoemission spectroscopy measurements. Moreover, this material also exhibits a stacked quantum Hall effect (QHE). The spin-valley degeneracy extracted from the QHE is close to 2. This result, together with the Landau level spin splitting, further confirms the spin-valley locking picture. In the extreme quantum limit, we also observed a plateau in the z -axis resistance, suggestive of a two-dimensional chiral surface state present in the quantum Hall state. These findings establish BaMnSb 2 as a rare platform for exploring coupled spin and valley physics in bulk single crystals and accessing 3D interacting topological states.