skip to main content

Search for: All records

Creators/Authors contains: "Lopez, Sebastian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Abundances of chemical elements in the interstellar and circumgalactic media of high-redshift galaxies offer important constraints on the nucleosynthesis by early generations of stars. Damped Lyαabsorbers (DLAs) in spectra of high-redshift background quasars are excellent sites for obtaining robust measurements of element abundances in distant galaxies. Past studies of DLAs at redshiftsz> 4 have measured abundances of ≲0.01 solar. Here we report the discovery of a DLA atz= 4.7372 with an exceptionally high degree of chemical enrichment. We estimate the Hicolumn density in this absorber to be log (NH I/cm−2) = 20.48 ± 0.15. Our analysis shows unusually high abundances of carbon and oxygen ([C/H] = 0.88 ± 0.17, [O/H] = 0.71 ± 0.16). Such a high level of enrichment a mere 1.2 Gyr after the Big Bang is surprising because of insufficient time for the required amount of star formation. To our knowledge, this is the first supersolar absorber found atz> 4.5. We find the abundances of Si and Mg to be [Si/H] =0.560.35+0.40and [Mg/H] =0.590.50+0.27, confirming the metal-rich nature of this absorber. By contrast, Fe shows a much lower abundance ([Fe/H] =1.530.15+0.15). We discuss implications of our results for galactic chemical evolution models. The metallicity of this absorber is higher than that of any other known DLA and is >2 orders of magnitude above predictions of chemical evolution models and theNH I-weighted mean metallicity from previous studies atz> 4.5. The relative abundances (e.g., [O/Fe] = 2.29 ± 0.05, [C/Fe] = 2.46 ± 0.08) are also highly unusual compared to predictions for enrichment by early stars.

    more » « less

    We present the spatially resolved measurements of a cool galactic outflow in the gravitationally lensed galaxy RCS0327 at z ≈ 1.703 using VLT/MUSE IFU observations. We probe the cool outflowing gas, traced by blueshifted Mg ii and Fe ii absorption lines, in 15 distinct regions of the same galaxy in its image-plane. Different physical regions, 5 – 7 kpc apart within the galaxy, drive the outflows at different velocities (Vout ∼ −161 to −240 km s−1), and mass outflow rates ($\dot{M}_{out} \sim 183$ – 527 ${\rm M}_{\odot }\, \mathrm{yr}^{-1}$). The outflow velocities from different regions of the same galaxy vary by 80 km s−1, which is comparable to the variation seen in a large sample of star-burst galaxies in the local universe. Using multiply lensed images of RCS0327, we probe the same star-forming region at different spatial scales (0.5–25 kpc2), we find that outflow velocities vary between ∼ −120 and −242 km s−1, and the mass outflow rates vary between ∼37 and 254 ${\rm M}_{\odot }\, \mathrm{yr}^{-1}$. The outflow momentum flux in this galaxy is ≥ 100% of the momentum flux provided by star formation in individual regions, and outflow energy flux is ≈ 10% of the total energy flux provided by star formation. These estimates suggest that the outflow in RCS0327 is energy driven. This work shows the importance of small scale variations of outflow properties due to the variations of local stellar properties of the host galaxy in the context of galaxy evolution.

    more » « less
  3. Abstract The first stars were born from chemically pristine gas. They were likely massive, and thus they rapidly exploded as supernovae, enriching the surrounding gas with the first heavy elements. In the Local Group, the chemical signatures of the first stellar population were identified among low-mass, long-lived, very metal-poor ([Fe/H] < −2) stars, characterized by high abundances of carbon over iron ([C/Fe] > +0.7): the so-called carbon-enhanced metal-poor stars. Conversely, a similar carbon excess caused by first-star pollution was not found in dense neutral gas traced by absorption systems at different cosmic time. Here we present the detection of 14 very metal-poor, optically thick absorbers at redshift z ∼ 3–4. Among these, 3 are carbon-enhanced and reveal an overabundance with respect to Fe of all the analyzed chemical elements (O, Mg, Al, and Si). Their relative abundances show a distribution with respect to [Fe/H] that is in very good agreement with those observed in nearby very metal-poor stars. All the tests we performed support the idea that these C-rich absorbers preserve the chemical yields of the first stars. Our new findings suggest that the first-star signatures can survive in optically thick but relatively diffuse absorbers, which are not sufficiently dense to sustain star formation and hence are not dominated by the chemical products of normal stars. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  4. Abstract

    This paper reports the first measurement of the relationship between turbulent velocity and cloud size in the diffuse circumgalactic medium (CGM) in typical galaxy halos at redshiftz≈ 0.4–1. Through spectrally resolved absorption profiles of a suite of ionic transitions paired with careful ionization analyses of individual components, cool clumps of size as small aslcl∼ 1 pc and density lower thannH= 10−3cm−3are identified in galaxy halos. In addition, comparing the line widths between different elements for kinematically matched components provides robust empirical constraints on the thermal temperatureTand the nonthermal motionsbNT, independent of the ionization models. On average,bNTis found to increase withlclfollowingbNTlcl0.3over three decades in spatial scale fromlcl≈ 1 pc tolcl≈ 1 kpc. Attributing the observedbNTto turbulent motions internal to the clumps, the best-fitbNTlclrelation shows that the turbulence is consistent with Kolmogorov at <1 kpc with a roughly constant energy transfer rate per unit mass ofϵ≈ 0.003 cm2s−3and a dissipation timescale of ≲100 Myr. No significant difference is found between massive quiescent and star-forming halos in the sample on scales less than 1 kpc. While the inferredϵis comparable to what is found in Civabsorbers at high redshift, it is considerably smaller than observed in star-forming gas or in extended line-emitting nebulae around distant quasars. A brief discussion of possible sources to drive the observed turbulence in the cool CGM is presented.

    more » « less
  5. Abstract

    We analyze image and spectral data from ≈365 ks of observations from the Chandra X-ray Observatory of the nearby, edge-on starburst galaxy NGC 253 to constrain properties of the hot phase of the outflow. We focus our analysis on the −1.1 to +0.63 kpc region of the outflow and define several regions for spectral extraction where we determine best-fit temperatures and metal abundances. We find that the temperatures and electron densities peak in the central ∼250 pc region of the outflow and decrease with distance. These temperature and density profiles are in disagreement with an adiabatic spherically expanding starburst wind model and suggest the presence of additional physics such as mass loading and nonspherical outflow geometry. Our derived temperatures and densities yield cooling times in the nuclear region of a few million years, which may imply that the hot gas can undergo bulk radiative cooling as it escapes along the minor axis. Our metal abundances of O, Ne, Mg, Si, S, and Fe all peak in the central region and decrease with distance along the outflow, with the exception of Ne, which maintains a flat distribution. The metal abundances indicate significant dilution outside of the starburst region. We also find estimates of the mass outflow rates, which are 2.8Myr−1in the northern outflow and 3.2Myr−1in the southern outflow. Additionally, we detect emission from charge exchange and find it makes a significant contribution (20%–42%) to the total broadband (0.5–7 keV) X-ray emission in the central and southern regions of the outflow.

    more » « less

    This paper presents a newly established sample of 19 unique galaxies and galaxy groups at redshift z = 0.89–1.21 in six QSO fields from the Cosmic Ultraviolet Baryon Survey (CUBS), designated as the CUBSz1 sample. In this sample, nine galaxies or galaxy groups show absorption features, while the other 10 systems exhibit 2σ upper limits of $\log N (\rm{He\,{\small I}})/\mbox{${\rm cm^{-2}}$}\lesssim 13.5$ and $\log N (\rm{O\,{\small V}})/\mbox{${\rm cm^{-2}}$}\lesssim 13.3$. Environmental properties of the galaxies, including galaxy overdensities, the total stellar mass and gravitational potential summed over all neighbours, and the presence of local ionizing sources, are found to have a significant impact on the observed CGM absorption properties. Specifically, massive galaxies and galaxies in overdense regions exhibit a higher rate of incidence of absorption. The CGM absorption properties in galaxy groups appear to be driven by the galaxy closest to the QSO sightline, rather than by the most massive galaxy or by mass-weighted properties. We introduce a total projected gravitational potential ψ, defined as −ψ/G = ∑Mhalo/dproj summed over all group members, to characterize the galaxy environment. This projected gravitational potential correlates linearly with the maximum density detected in each sightline (i.e. a power-law slope of $0.95_{-0.14}^{+0.15}$), consistent with higher pressure gas being confined in deeper gravitational potential wells. In addition, we find that the radial profile of cool gas density exhibits a decline from the inner regions to the outskirts, and the amplitude is consistent with the cool gas being in pressure balance with the hot halo. Finally, we note that the ionizing flux from nearby galaxies can elevate the N(H i)/N(He i) ratio, which provides a unique diagnostic of possible local sources contributing to the ionizing radiation field.

    more » « less

    The analytic galactic wind model derived by Chevalier and Clegg in 1985 (CC85) assumes uniform energy and mass-injection within the starburst galaxy nucleus. However, the structure of nuclear star clusters, bulges, and star-forming knots are non-uniform. We generalize to cases with spherically-symmetric energy/mass injection that scale as r−Δ within the starburst volume R, providing solutions for Δ = 0, 1/2, 1, 3/2, and 2. In marked contrast with the CC85 model (Δ = 0), which predicts zero velocity at the centre, for a singular isothermal sphere profile (Δ = 2), we find that the flow maintains a constant Mach number of $\mathcal {M}=\sqrt{3/5} \simeq 0.77$ throughout the volume. The fast interior flow can be written as $v_{r \lt R} = (\dot{E}_T/3\dot{M}_T)^{1/2} \simeq 0.41 \, v_\infty$, where v∞ is the asymptotic velocity, and $\dot{E}_T$ and $\dot{M}_T$ are the total energy and mass injection rates. For $v_\infty \simeq 2000 \, \mathrm{km \, s^{-1}}$, $v_{r\lt R} \simeq 820 \, \mathrm{km\, s^{-1}}$ throughout the wind-driving region. The temperature and density profiles of the non-uniform models may be important for interpreting spatially-resolved maps of starburst nuclei. We compute velocity resolved spectra to contrast the Δ = 0 (CC85) and Δ = 2 models. Next generation X-ray space telescopes such as XRISM may assess these kinematic predictions.

    more » « less
  8. Abstract We present spectroscopic confirmation of candidate strong gravitational lenses using the Keck Observatory and Very Large Telescope as part of our ASTRO 3D Galaxy Evolution with Lenses ( AGEL ) survey. We confirm that (1) search methods using convolutional neural networks (CNNs) with visual inspection successfully identify strong gravitational lenses and (2) the lenses are at higher redshifts relative to existing surveys due to the combination of deeper and higher-resolution imaging from DECam and spectroscopy spanning optical to near-infrared wavelengths. We measure 104 redshifts in 77 systems selected from a catalog in the DES and DECaLS imaging fields ( r ≤ 22 mag). Combining our results with published redshifts, we present redshifts for 68 lenses and establish that CNN-based searches are highly effective for use in future imaging surveys with a success rate of at least 88% (defined as 68/77). We report 53 strong lenses with spectroscopic redshifts for both the deflector and source ( z src > z defl ), and 15 lenses with a spectroscopic redshift for either the deflector ( z defl > 0.21) or source ( z src ≥ 1.34). For the 68 lenses, the deflectors and sources have average redshifts and standard deviations of 0.58 ± 0.14 and 1.92 ± 0.59 respectively, and corresponding redshift ranges of z defl = 0.21–0.89 and z src = 0.88–3.55. The AGEL systems include 41 deflectors at z defl ≥ 0.5 that are ideal for follow-up studies to track how mass density profiles evolve with redshift. Our goal with AGEL is to spectroscopically confirm ∼100 strong gravitational lenses that can be observed from both hemispheres throughout the year. The AGEL survey is a resource for refining automated all-sky searches and addressing a range of questions in astrophysics and cosmology. 
    more » « less
  9. ABSTRACT We present a detailed study of two partial Lyman limit systems (pLLSs) of neutral hydrogen column density $N_\mathrm{H\, I}\approx (1-3)\times 10^{16}\, \mathrm{cm}^{-2}$ discovered at $z$ = 0.5 in the Cosmic Ultraviolet Baryon Survey (CUBS). Available far-ultraviolet spectra from the Hubble Space Telescope Cosmic Origins Spectrograph and optical echelle spectra from MIKE on the Magellan Telescopes enable a comprehensive ionization analysis of diffuse circumgalactic gas based on resolved kinematics and abundance ratios of atomic species spanning five different ionization stages. These data provide unambiguous evidence of kinematically aligned multiphase gas that masquerades as a single-phase structure and can only be resolved by simultaneous accounting of the full range of observed ionic species. Both systems are resolved into multiple components with inferred α-element abundance varying from [α/H] ≈−0.8 to near solar and densities spanning over two decades from log nH/cm−3 ≈ −2.2 to <−4.3. Available deep galaxy survey data from the CUBS program taken with VLT/MUSE, Magellan/LDSS3-C and Magellan/IMACS reveal that the $z$ = 0.47 system is located 55 kpc from a star-forming galaxy with prominent Balmer absorption of stellar mass ${{M_{\rm star}}}\approx 2\times 10^{10}\, {{M_{\odot}}}$, while the $z$ = 0.54 system resides in an overdense environment of 11 galaxies within 750 kpc in projected distance, with the most massive being a luminous red galaxy of ${{M_{\rm star}}}\approx 2\times 10^{11}\, {{M_{\odot}}}$ at 375 kpc. The study of these two pLLSs adds to an emerging picture of the complex, multiphase circumgalactic gas that varies in chemical abundances and density on small spatial scales in diverse galaxy environments. The inhomogeneous nature of metal enrichment and density revealed in observations must be taken into account in theoretical models of diffuse halo gas. 
    more » « less