Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
An increase in volcanic thermal emissions can indicate subsurface and surface processes that precede, or coincide with, volcanic eruptions. Space-borne infrared sensors can detect hotspots—defined here as localized volcanic thermal emissions—in near-real-time. However, automatic hotspot detection systems are needed to efficiently analyze the large quantities of data produced. While hotspots have been automatically detected for over 20 years with simple thresholding algorithms, new computer vision technologies, such as convolutional neural networks (CNNs), can enable improved detection capabilities. Here we introduce HotLINK: the Hotspot Learning and Identification Network, a CNN trained to detect hotspots with a dataset of −3,800 satellite-based, Visible Infrared Imaging Radiometer Suite (VIIRS) images from Mount Veniaminof and Mount Cleveland volcanoes, Alaska. We find that our model achieves an accuracy of 96% (F1-score 0.92) when evaluated on −1,700 unseen images from the same volcanoes, and 95% (F1-score 0.67) when evaluated on −3,000 images from six additional Alaska volcanoes (Augustine Volcano, Bogoslof Island, Okmok Caldera, Pavlof Volcano, Redoubt Volcano, Shishaldin Volcano). In comparison with an existing threshold-based hotspot detection algorithm, MIROVA (Coppola et al., Geological Society, London, Special Publications, 2016, 426, 181–205), our model detects 22% more hotspots and produces 12% fewer false positives. Additional testing on −700 labeled Moderate Resolution Imaging Spectroradiometer (MODIS) images from Mount Veniaminof demonstrates that our model is applicable to this sensor’s data as well, achieving an accuracy of 98% (F1-score 0.95). We apply HotLINK to 10 years of VIIRS data and 22 years of MODIS data for the eight aforementioned Alaska volcanoes and calculate the radiative power of detected hotspots. From these time series we find that HotLINK accurately characterizes background and eruptive periods, similar to MIROVA, but also detects more subtle warming signals, potentially related to volcanic unrest. We identify three advantages to our model over its predecessors: 1) the ability to detect more subtle volcanic hotspots and produce fewer false positives, especially in daytime images; 2) probabilistic predictions provide a measure of detection confidence; and 3) its transferability, i.e., the successful application to multiple sensors and multiple volcanoes without the need for threshold tuning, suggesting the potential for global application.more » « less
-
Subduction transports volatiles between Earth’s mantle, crust, and atmosphere, ultimately creating a habitable Earth. We use isotopes to track carbon from subduction to outgassing along the Aleutian-Alaska Arc. We find substantial along-strike variations in the isotopic composition of volcanic gases, explained by different recycling efficiencies of subducting carbon to the atmosphere via arc volcanism and modulated by subduction character. Fast and cool subduction facilitates recycling of ~43 to 61% sediment-derived organic carbon to the atmosphere through degassing of central Aleutian volcanoes, while slow and warm subduction favors forearc sediment removal, leading to recycling of ~6 to 9% altered oceanic crust carbon to the atmosphere through degassing of western Aleutian volcanoes. These results indicate that less carbon is returned to the deep mantle than previously thought and that subducting organic carbon is not a reliable atmospheric carbon sink over subduction time scales.more » « less
-
Abstract Volcanic tremor is a semi‐continuous seismic and/or acoustic signal that occurs at time scales ranging from seconds to years, with variable amplitudes and spectral features. Tremor sources have often been related to fluid movement and degassing processes, and are recognized as a potential geophysical precursor and co‐eruptive geophysical signal. Eruption forecasting and monitoring efforts need a fast, robust method to automatically detect, characterize, and catalog volcanic tremor. Here we develop VOlcano Infrasound and Seismic Spectrogram Network (VOISS‐Net), a pair of convolutional neural networks (one for seismic, one for acoustic) that can detect tremor in near real‐time and classify it according to its spectral signature. Specifically, we construct an extensive data set of labeled seismic and low‐frequency acoustic (infrasound) spectrograms from the 2021–2022 eruption of Pavlof Volcano, Alaska, and use it to train VOISS‐Net to differentiate between different tremor types, explosions, earthquakes and noise. We use VOISS‐Net to classify continuous data from past Pavlof Volcano eruptions (2007, 2013, 2014, 2016, and 2021–2022). VOISS‐Net achieves an 81.2% and 90.0% accuracy on the seismic and infrasound test sets respectively, and successfully characterizes tremor sequences for each eruption. By comparing the derived seismoacoustic timelines of each eruption with the corresponding eruption chronologies compiled by the Alaska Volcano Observatory, our model identifies changes in tremor regimes that coincide with observed volcanic activity. VOISS‐Net can aid tremor‐related monitoring and research by making consistent tremor catalogs more accessible.more » « less