skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Loranty, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ### Access Dataset can be accessed and downloaded from the directory via: [http://arcticdata.io/data/10.18739/A2736M42V](http://arcticdata.io/data/10.18739/A2736M42V). ### Overview This data set includes imagery collected using Uncrewed Aerial Vehicles (UAV, i.e. drones) for a series of research sites in interior Alaska with the objective of mapping the distribution of individual plants (e.g. Eriophorum vaginatum tussocks) and other similarly sized ecosystem components. Data was collected in the summer of 2024 using a DJI Mavic 3 Enterprise quadcopter with integrated multispectral and rgb sensors. The majority of the imagery focuses on study sites within the National Ecological Observatory Network (NEON) site near Healy, Alaska. The data set also includes a small amount of ground truth data on tussock dimensions for these sites. Additional images include a series of riparian corridors with beaver wetlands along the Denali and Steese Highways. 
    more » « less
  2. Abstract Climate change is expected to induce shifts in the composition, structure and functioning of Arctic tundra ecosystems. Increases in the frequency and severity of tundra fires have the potential to catalyse vegetation transitions with far‐reaching local, regional and global consequences.We propose that post‐fire tundra recovery, coupled with climate change, may not necessarily lead to pre‐fire conditions. Our hypothesis, based on surveys and literature, suggests two climate–fire driven trajectories. One trajectory results in increased woody vegetation under low fire frequency; the other results in grass dominance under high frequency.Future research should address uncertainties regarding possible tundra ecosystem shifts linked to fires, using methods that encompass greater temporal and spatial scales than previously addressed. More case studies, especially in underrepresented regions and ecosystem types, are essential to broaden the empirical basis for forecasts and potential fire management strategies.Synthesis. Our review synthesises current knowledge on post‐fire vegetation trajectories in Arctic tundra ecosystems, highlighting potential transitions and alternative ecosystem states and their implications. We discuss challenges in defining and predicting these trajectories as well as future directions. 
    more » « less
    Free, publicly-accessible full text available March 13, 2026
  3. Free, publicly-accessible full text available September 11, 2025
  4. Fire severity is increasing in larch forests of the Siberian Arctic as climate warms, and initial fire impacts on tree demographic processes could be an especially important determinant of long-term forest structure and carbon (C) dynamics. We hypothesized that changes in post-fire larch recruitment impact C accumulation through tree density impacts on understory microclimate and permafrost thaw. We tested these hypotheses by quantifying C pools across a Cajander larch (Larix cajanderi Mayr.) tree density gradient within a fire perimeter near Cherskiy, Russia that burned in ~1940. Across the density gradient, from 2010 - 2017 we inventoried larch trees and harvested ground-layer vegetation to estimate above ground contribution to C pools. We also quantified woody debris C pools and sampled below ground C pools (soil, fine roots, and coarse roots) in the organic + upper mineral soils. Our findings should highlight the potential for a climate-driven increase in fire severity to alter tree recruitment, successional dynamics, and C cycling in Siberian larch forests. 
    more » « less
  5. Fire severity is increasing in larch forests of the Siberian Arctic as climate warms, and initial fire impacts on tree demographic processes could be an especially important determinant of long-term forest structure and carbon (C) dynamics. We hypothesized that changes in post-fire larch recruitment impact C accumulation through tree density impacts on understory microclimate and permafrost thaw. We tested these hypotheses by quantifying C pools across a Cajander larch (Larix cajanderi Mayr.) tree density gradient within a fire perimeter near Cherskiy, Russia that burned in ~1940. Across the density gradient, from 2010 - 2017 we inventoried larch trees and harvested ground-layer vegetation to estimate above ground contribution to C pools. We also quantified woody debris C pools and sampled below ground C pools (soil, fine roots, and coarse roots) in the organic + upper mineral soils. Our findings should highlight the potential for a climate-driven increase in fire severity to alter tree recruitment, successional dynamics, and C cycling in Siberian larch forests. 
    more » « less
  6. Fire severity is increasing in larch forests of the Siberian Arctic as climate warms, and initial fire impacts on tree demographic processes could be an especially important determinant of long-term forest structure and carbon (C) dynamics. We hypothesized that changes in post-fire larch recruitment impact C accumulation through tree density impacts on understory microclimate and permafrost thaw. We tested these hypotheses by quantifying C pools across a Cajander larch (Larix cajanderi Mayr.) tree density gradient within a fire perimeter near Cherskiy, Russia that burned in ~1940. Across the density gradient, from 2010 - 2017 we inventoried larch trees and harvested ground-layer vegetation to estimate above ground contribution to C pools. We also quantified snag and woody debris C pools and sampled below ground C pools (soil, fine roots, and coarse roots) in the organic + upper mineral soils. Our findings should highlight the potential for a climate-driven increase in fire severity to alter tree recruitment, successional dynamics, and C cycling in Siberian larch forests. 
    more » « less
  7. Abstract In the Arctic, winter soil temperatures exert strong control over mean annual soil temperature and winter CO2emissions. In tundra ecosystems there is evidence that plant canopy influences on snow accumulation alter winter soil temperatures. By comparison, there has been relatively little research examining the impacts of heterogeneity in boreal forest cover on soil temperatures. Using seven years of data from six sites in northeastern Siberia that vary in stem density we show that snow-depth and forest canopy cover exert equally strong control on cumulative soil freezing degrees days (FDDsoil). Together snow depth and canopy cover explain approximately 75% of the variance in linear models of FDDsoiland freezingn-factors (nf; calculated as the quotient of FDDsoiland FDDair), across sites and years. Including variables related to air temperature, or antecedent soil temperatures does not substantially improve models. The observed increase in FDDsoilwith canopy cover suggests that canopy interception of snow or thermal conduction through trees may be important for winter soil temperature dynamics in forested ecosystems underlain by continuous permafrost. Our results imply that changes in Siberian larch forest cover that arise from climate warming or fire regime changes may have important impacts on winter soil temperature dynamics. 
    more » « less
  8. Climate change is intensifying the fire regime across Siberia, with the potential to alter carbon combustion and post‐fire carbon re‐accumulation trajectories. Few field‐based estimates of fire severity (e.g., carbon combustion and tree mortality) exist in Siberian larch forests (Larixspp.), which limits our ability to project how an intensified fire regime will affect regional and global climate feedbacks. Here, we present field‐based estimates of fire‐induced tree mortality and carbon loss in eastern Siberian larch forests. Our results suggest that fires in this region result in high tree mortality (means of 83% and 76% at Arctic and subarctic sites, respectively). In both absolute and relative terms, aboveground carbon loss following fire is higher in Siberian larch forests than in North America, but belowground carbon loss is considerably lower. This suggests fundamental differences in wildfire behavior and carbon dynamics between dominant vegetation types across the boreal biome. 
    more » « less
  9. Abstract. As the northern high latitude permafrost zone experiences accelerated warming, permafrost has become vulnerable to widespread thaw. Simultaneously, wildfire activity across northern boreal forest and Arctic/subarctic tundra regions impact permafrost stability through the combustion of insulating organic matter, vegetation and post-fire changes in albedo. Efforts to synthesise the impacts of wildfire on permafrost are limited and are typically reliant on antecedent pre-fire conditions. To address this, we created the FireALT dataset by soliciting data contributions that included thaw depth measurements, site conditions, and fire event details with paired measurements at environmentally comparable burned and unburned sites. The solicitation resulted in 52,466 thaw depth measurements from 18 contributors across North America and Russia. Because thaw depths were taken at various times throughout the thawing season, we also estimated end of season active layer thickness (ALT) for each measurement using a modified version of the Stefan equation. Here, we describe our methods for collecting and quality checking the data, estimating ALT, the data structure, strengths and limitations, and future research opportunities. The final dataset includes 47,952 ALT estimates (27,747 burned, 20,205 unburned) with 32 attributes. There are 193 unique paired burned/unburned sites spread across 12 ecozones that span Canada, Russia, and the United States. The data span fire events from 1900 to 2022. Time since fire ranges from zero to 114 years. The FireALT dataset addresses a key challenge: the ability to assess impacts of wildfire on ALT when measurements are taken at various times throughout the thaw season depending on the time of field campaigns (typically June through August) by estimating ALT at the end of season maximum. This dataset can be used to address understudied research areas particularly algorithm development, calibration, and validation for evolving process-based models as well as extrapolating across space and time, which could elucidate permafrost-wildfire interactions under accelerated warming across the high northern latitude permafrost zone. The FireALT dataset is available through the Arctic Data Center. 
    more » « less
    Free, publicly-accessible full text available December 3, 2025