- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Brimkov, Boris (1)
-
Cheng, Jian (1)
-
Duna, Ken (1)
-
Hogben, Leslie (1)
-
Lai, Hong-Jian (1)
-
Lorenzen, Kate (1)
-
Lorenzen, Kate J. (1)
-
Luo, Rong (1)
-
Reinhart, Carolyn (1)
-
Song, Sung-Yell (1)
-
Thompson, Joshua C. (1)
-
Yarrow, Mark (1)
-
Zhang, Cun-Quan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)The distance matrix $$\mathcal{D}(G)$$ of a graph $$G$$ is the matrix containing the pairwise distances between vertices, and the distance Laplacian matrix is $$\mathcal{D}^L (G)=T(G)-\mathcal{D} (G)$$, where $T(G)$ is the diagonal matrix of row sums of $$\mathcal{D}(G)$$. Several general methods are established for producing $$\mathcal{D}^L$$-cospectral graphs that can be used to construct infinite families. Examples are provided to show that various properties are not preserved by $$\mathcal{D}^L$$-cospectrality, including examples of $$\mathcal{D}^L$$-cospectral strongly regular and circulant graphs. It is established that the absolute values of coefficients of the distance Laplacian characteristic polynomial are decreasing, i.e., $$|\delta^L_{1}|\geq \cdots \geq |\delta^L_{n}|$$, where $$\delta^L_{k}$$ is the coefficient of $x^k$.more » « less
-
Cheng, Jian; Lai, Hong-Jian; Lorenzen, Kate J.; Luo, Rong; Thompson, Joshua C.; Zhang, Cun-Quan (, Discrete Applied Mathematics)
An official website of the United States government
